Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1256.115 on revision:1256

* Page found: Das d'Alembertsche Prinzip (eq math.1256.115)

(force rerendering)

Occurrences on the following pages:

Hash: bbaefdd4f0d9fca4f081fc6e29a094b2

TeX (original user input):

\sum\limits_{i}{{{m}_{i}}{{{\ddot{\bar{r}}}}_{i}}\delta {{{\bar{r}}}_{i}}}=\sum\limits_{j}{{}}\left( \sum\limits_{i}{{{m}_{i}}{{{\ddot{\bar{r}}}}_{i}}\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}}} \right)\delta {{q}_{j}}=\sum\limits_{j}{{}}\sum\limits_{i}^{{}}{\left\{ \frac{d}{dt}\left( {{m}_{i}}{{{\dot{\vec{r}}}}_{i}}\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}} \right)-{{m}_{i}}{{{\dot{\vec{r}}}}_{i}}\frac{d}{dt}\left( \frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}} \right) \right\}\delta {{q}_{j}}_{{}}}

TeX (checked):

\sum \limits _{i}{{{m}_{i}}{{\ddot {\bar {r}}}_{i}}\delta {{\bar {r}}_{i}}}=\sum \limits _{j}{}\left(\sum \limits _{i}{{{m}_{i}}{{\ddot {\bar {r}}}_{i}}{\frac {\partial }{\partial {{q}_{j}}}}{{\bar {r}}_{i}}}\right)\delta {{q}_{j}}=\sum \limits _{j}{}\sum \limits _{i}^{}{\left\{{\frac {d}{dt}}\left({{m}_{i}}{{\dot {\vec {r}}}_{i}}{\frac {\partial }{\partial {{q}_{j}}}}{{\bar {r}}_{i}}\right)-{{m}_{i}}{{\dot {\vec {r}}}_{i}}{\frac {d}{dt}}\left({\frac {\partial }{\partial {{q}_{j}}}}{{\bar {r}}_{i}}\right)\right\}\delta {{q}_{j}}_{}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.706 KB / 471 B) :

imir¯¨iδr¯i=j(imir¯¨iqjr¯i)δqj=ji{ddt(mir˙iqjr¯i)mir˙iddt(qjr¯i)}δqj
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03B4;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></munder><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><mi>&#x03B4;</mi><msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"></mrow></msub></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • i
  • mi
  • r¯¨i
  • δ
  • r¯i
  • j
  • i
  • mi
  • r¯¨i
  • qj
  • r¯i
  • δ
  • qj
  • j
  • i
  • d
  • d
  • t
  • mi
  • r˙i
  • qj
  • r¯i
  • mi
  • r˙i
  • d
  • d
  • t
  • qj
  • r¯i
  • δ
  • qj

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results