Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1255.199 on revision:1255
* Page found: Das d'Alembertsche Prinzip (eq math.1255.199)
(force rerendering)Occurrences on the following pages:
Hash: d5955ed1c66b2a6875db940e5c37afb8
TeX (original user input):
\begin{align}
& \sum\limits_{k,l}{{{A}_{l}}^{a}{{T}_{lk}}{{A}_{k}}^{a}=m\sum\limits_{k}{{{\left| {{A}_{k}}^{a} \right|}^{2}}}=1} \\
& \Rightarrow \left( \begin{matrix}
{{A}_{1}}^{1} \\
{{A}_{2}}^{1} \\
\end{matrix} \right)=\frac{1}{\sqrt{2m}}\left( \begin{matrix}
1 \\
1 \\
\end{matrix} \right) \\
& \left( \begin{matrix}
{{A}_{1}}^{2} \\
{{A}_{2}}^{2} \\
\end{matrix} \right)=\frac{1}{\sqrt{2m}}\left( \begin{matrix}
1 \\
-1 \\
\end{matrix} \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&\sum \limits _{k,l}{{{A}_{l}}^{a}{{T}_{lk}}{{A}_{k}}^{a}=m\sum \limits _{k}{{\left|{{A}_{k}}^{a}\right|}^{2}}=1}\\&\Rightarrow \left({\begin{matrix}{{A}_{1}}^{1}\\{{A}_{2}}^{1}\\\end{matrix}}\right)={\frac {1}{\sqrt {2m}}}\left({\begin{matrix}1\\1\\\end{matrix}}\right)\\&\left({\begin{matrix}{{A}_{1}}^{2}\\{{A}_{2}}^{2}\\\end{matrix}}\right)={\frac {1}{\sqrt {2m}}}\left({\begin{matrix}1\\-1\\\end{matrix}}\right)\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (3.637 KB / 531 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>,</mo><mi>l</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><mo>=</mo><mi>m</mi><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>−</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results