Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.199 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.199)

(force rerendering)

Occurrences on the following pages:

Hash: d5955ed1c66b2a6875db940e5c37afb8

TeX (original user input):

\begin{align}
  & \sum\limits_{k,l}{{{A}_{l}}^{a}{{T}_{lk}}{{A}_{k}}^{a}=m\sum\limits_{k}{{{\left| {{A}_{k}}^{a} \right|}^{2}}}=1} \\
 & \Rightarrow \left( \begin{matrix}
   {{A}_{1}}^{1}  \\
   {{A}_{2}}^{1}  \\
\end{matrix} \right)=\frac{1}{\sqrt{2m}}\left( \begin{matrix}
   1  \\
   1  \\
\end{matrix} \right) \\
 & \left( \begin{matrix}
   {{A}_{1}}^{2}  \\
   {{A}_{2}}^{2}  \\
\end{matrix} \right)=\frac{1}{\sqrt{2m}}\left( \begin{matrix}
   1  \\
   -1  \\
\end{matrix} \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&\sum \limits _{k,l}{{{A}_{l}}^{a}{{T}_{lk}}{{A}_{k}}^{a}=m\sum \limits _{k}{{\left|{{A}_{k}}^{a}\right|}^{2}}=1}\\&\Rightarrow \left({\begin{matrix}{{A}_{1}}^{1}\\{{A}_{2}}^{1}\\\end{matrix}}\right)={\frac {1}{\sqrt {2m}}}\left({\begin{matrix}1\\1\\\end{matrix}}\right)\\&\left({\begin{matrix}{{A}_{1}}^{2}\\{{A}_{2}}^{2}\\\end{matrix}}\right)={\frac {1}{\sqrt {2m}}}\left({\begin{matrix}1\\-1\\\end{matrix}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.637 KB / 531 B) :

k,lAlaTlkAka=mk|Aka|2=1(A11A21)=12m(11)(A12A22)=12m(11)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>,</mo><mi>l</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><mo>=</mo><mi>m</mi><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • k
  • l
  • Al
  • a
  • Tlk
  • Ak
  • a
  • m
  • k
  • Ak
  • a
  • A1
  • A2
  • m
  • A1
  • A2
  • m

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results