Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.198 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.198)

(force rerendering)

Occurrences on the following pages:

Hash: 16d0570e3a3c0717feddd79e2be9863f

TeX (original user input):

\left( \begin{matrix}
   {{Q}_{1}}  \\
   {{Q}_{2}}  \\
\end{matrix} \right)=\left( \begin{matrix}
   {{A}_{1}}^{1} & {{A}_{2}}^{1}  \\
   {{A}_{1}}^{2} & {{A}_{2}}^{2}  \\
\end{matrix} \right)\left( \begin{matrix}
   {{q}_{1}}  \\
   {{q}_{2}}  \\
\end{matrix} \right)

TeX (checked):

\left({\begin{matrix}{{Q}_{1}}\\{{Q}_{2}}\\\end{matrix}}\right)=\left({\begin{matrix}{{A}_{1}}^{1}&{{A}_{2}}^{1}\\{{A}_{1}}^{2}&{{A}_{2}}^{2}\\\end{matrix}}\right)\left({\begin{matrix}{{q}_{1}}\\{{q}_{2}}\\\end{matrix}}\right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (1.762 KB / 317 B) :

(Q1Q2)=(A11A21A12A22)(q1q2)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • Q1
  • Q2
  • A1
  • A2
  • A1
  • A2
  • q1
  • q2

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results