Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.191 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.191)

(force rerendering)

Occurrences on the following pages:

Hash: 8013a8ca8ab2186217fd94de27fb4ac6

TeX (original user input):

\begin{align}
  & 0=\det ({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}})={{m}^{2}}\left| \begin{matrix}
   \frac{g}{l}+\frac{k}{m}-{{\omega }^{2}} & -\frac{k}{m}  \\
   \frac{-k}{m} & \frac{g}{l}+\frac{k}{m}-{{\omega }^{2}}  \\
\end{matrix} \right|=0 \\
 & 0={{\omega }^{4}}-2\left( \frac{k}{m}+\frac{g}{l} \right){{\omega }^{2}}+\frac{{{g}^{2}}}{{{l}^{2}}}+2\frac{gk}{lm}={{\omega }^{4}}-2\left( \frac{k}{m}+\frac{g}{l} \right){{\omega }^{2}}+{{\left( \frac{g}{l}+\frac{k}{m} \right)}^{2}}-{{\left( \frac{k}{m} \right)}^{2}} \\
\end{align}

TeX (checked):

{\begin{aligned}&0=\det({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}})={{m}^{2}}\left|{\begin{matrix}{\frac {g}{l}}+{\frac {k}{m}}-{{\omega }^{2}}&-{\frac {k}{m}}\\{\frac {-k}{m}}&{\frac {g}{l}}+{\frac {k}{m}}-{{\omega }^{2}}\\\end{matrix}}\right|=0\\&0={{\omega }^{4}}-2\left({\frac {k}{m}}+{\frac {g}{l}}\right){{\omega }^{2}}+{\frac {{g}^{2}}{{l}^{2}}}+2{\frac {gk}{lm}}={{\omega }^{4}}-2\left({\frac {k}{m}}+{\frac {g}{l}}\right){{\omega }^{2}}+{{\left({\frac {g}{l}}+{\frac {k}{m}}\right)}^{2}}-{{\left({\frac {k}{m}}\right)}^{2}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.914 KB / 575 B) :

0=det(Vlkω2Tlk)=m2|gl+kmω2kmkmgl+kmω2|=00=ω42(km+gl)ω2+g2l2+2gklm=ω42(km+gl)ω2+(gl+km)2(km)2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>det</mi><mo>&#x2061;</mo><mo stretchy="false">(</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo>&#x2212;</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><msup><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mo>&#x2212;</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mo>&#x2212;</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup><mo>&#x2212;</mo><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>g</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>+</mo><mn>2</mn><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>g</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></mfrac></mrow><mo>=</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup><mo>&#x2212;</mo><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • Vlk
  • ω
  • Tlk
  • m
  • g
  • l
  • k
  • m
  • ω
  • k
  • m
  • k
  • m
  • g
  • l
  • k
  • m
  • ω
  • ω
  • k
  • m
  • g
  • l
  • ω
  • g
  • l
  • g
  • k
  • l
  • m
  • ω
  • k
  • m
  • g
  • l
  • ω
  • g
  • l
  • k
  • m
  • k
  • m

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results