Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.185 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.185)

(force rerendering)

Occurrences on the following pages:

Hash: 7a3a86719661b5b518d0a46476644dca

TeX (original user input):

\begin{align}
  & {{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}^{2}} \right)}_{0}}={{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{2}}^{2}} \right)}_{0}}=m\frac{g}{l}+k \\
 & \left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}\partial {{q}_{2}}} \right)=mg\frac{\partial }{\partial {{q}_{1}}}(\sin \frac{{{q}_{2}}}{l})-k\frac{\partial }{\partial {{q}_{1}}}({{q}_{1}}-{{q}_{2}})=-k \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\left({\frac {{{\partial }^{2}}V}{\partial {{q}_{1}}^{2}}}\right)}_{0}}={{\left({\frac {{{\partial }^{2}}V}{\partial {{q}_{2}}^{2}}}\right)}_{0}}=m{\frac {g}{l}}+k\\&\left({\frac {{{\partial }^{2}}V}{\partial {{q}_{1}}\partial {{q}_{2}}}}\right)=mg{\frac {\partial }{\partial {{q}_{1}}}}(\sin {\frac {{q}_{2}}{l}})-k{\frac {\partial }{\partial {{q}_{1}}}}({{q}_{1}}-{{q}_{2}})=-k\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.509 KB / 487 B) :

(2Vq12)0=(2Vq22)0=mgl+k(2Vq1q2)=mgq1(sinq2l)kq1(q1q2)=k
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><mi>m</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo>+</mo><mi>k</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>m</mi><mi>g</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo stretchy="false">(</mo><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo stretchy="false">)</mo><mo>&#x2212;</mo><mi>k</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo><mi>k</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • V
  • q1
  • V
  • q2
  • m
  • g
  • l
  • k
  • V
  • q1
  • q2
  • m
  • g
  • q1
  • q2
  • l
  • k
  • q1
  • q1
  • q2
  • k

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results