Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1255.185 on revision:1255
* Page found: Das d'Alembertsche Prinzip (eq math.1255.185)
(force rerendering)Occurrences on the following pages:
Hash: 7a3a86719661b5b518d0a46476644dca
TeX (original user input):
\begin{align}
& {{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}^{2}} \right)}_{0}}={{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{2}}^{2}} \right)}_{0}}=m\frac{g}{l}+k \\
& \left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}\partial {{q}_{2}}} \right)=mg\frac{\partial }{\partial {{q}_{1}}}(\sin \frac{{{q}_{2}}}{l})-k\frac{\partial }{\partial {{q}_{1}}}({{q}_{1}}-{{q}_{2}})=-k \\
\end{align}
TeX (checked):
{\begin{aligned}&{{\left({\frac {{{\partial }^{2}}V}{\partial {{q}_{1}}^{2}}}\right)}_{0}}={{\left({\frac {{{\partial }^{2}}V}{\partial {{q}_{2}}^{2}}}\right)}_{0}}=m{\frac {g}{l}}+k\\&\left({\frac {{{\partial }^{2}}V}{\partial {{q}_{1}}\partial {{q}_{2}}}}\right)=mg{\frac {\partial }{\partial {{q}_{1}}}}(\sin {\frac {{q}_{2}}{l}})-k{\frac {\partial }{\partial {{q}_{1}}}}({{q}_{1}}-{{q}_{2}})=-k\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (3.509 KB / 487 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><mi>m</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo>+</mo><mi>k</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mi>∂</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>m</mi><mi>g</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo stretchy="false">(</mo><mi>sin</mi><mo>⁡</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo stretchy="false">)</mo><mo>−</mo><mi>k</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mi>k</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results