Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1255.183 on revision:1255
* Page found: Das d'Alembertsche Prinzip (eq math.1255.183)
(force rerendering)Occurrences on the following pages:
Hash: 030a10262a3044609fd3c046ff04a485
TeX (original user input):
\begin{align}
& T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
& V=mg{{z}_{1}}+mg{{z}_{2}}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=mgl(1-\cos \frac{{{q}_{1}}}{l})+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}+mgl(1-\cos \frac{{{q}_{2}}}{l}) \\
& V\approx \frac{1}{2}mgl{{\phi }_{1}}^{2}+\frac{1}{2}mgl{{\phi }_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}} \\
\end{align}
TeX (checked):
{\begin{aligned}&T={\frac {1}{2}}m({{\dot {q}}_{1}}^{2}+{{\dot {q}}_{2}}^{2})\\&V=mg{{z}_{1}}+mg{{z}_{2}}+{\frac {1}{2}}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=mgl(1-\cos {\frac {{q}_{1}}{l}})+{\frac {1}{2}}k{{({{q}_{1}}-{{q}_{2}})}^{2}}+mgl(1-\cos {\frac {{q}_{2}}{l}})\\&V\approx {\frac {1}{2}}mgl{{\phi }_{1}}^{2}+{\frac {1}{2}}mgl{{\phi }_{2}}^{2}+{\frac {1}{2}}k{{({{q}_{1}}-{{q}_{2}})}^{2}}={\frac {1}{2}}{\frac {g}{l}}m{{q}_{1}}^{2}+{\frac {1}{2}}{\frac {g}{l}}m{{q}_{2}}^{2}+{\frac {1}{2}}k{{({{q}_{1}}-{{q}_{2}})}^{2}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.457 KB / 542 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>T</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><mo stretchy="false">(</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>V</mi><mo>=</mo><mi>m</mi><mi>g</mi><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><mi>m</mi><mi>g</mi><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>k</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>m</mi><mi>g</mi><mi>l</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>cos</mi><mo>⁡</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>k</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>m</mi><mi>g</mi><mi>l</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>cos</mi><mo>⁡</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>V</mi><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><mi>g</mi><mi>l</mi><msup><msub><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><mi>g</mi><mi>l</mi><msup><msub><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>k</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mi>m</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mi>m</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>k</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results