Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.159 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.159)

(force rerendering)

Occurrences on the following pages:

Hash: 529a8a7debd9b79249f530da06bffc90

TeX (original user input):

\begin{align}
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{*}} \right. \\
 & \sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}-}{{\omega }^{2}}\sum\limits_{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=0 \\
 & {{\omega }^{2}}=\frac{\sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}}{\sum\limits_{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}} \\
 & \sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=\frac{1}{2}\sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}+\frac{1}{2}\sum\limits_{l,k}{{{V}_{kl}}{{A}_{k}}^{*}{{A}_{l}}=}\frac{1}{2}\sum\limits_{l,k}{{{V}_{lk}}\left( {{A}_{l}}^{*}{{A}_{k}}+{{A}_{k}}^{*}{{A}_{l}} \right)=}\frac{1}{2}\sum\limits_{l,k}{{{V}_{lk}}2\cdot \operatorname{Re}\left( {{A}_{l}}^{*}{{A}_{k}} \right)} \\
\end{align}

TeX (checked):

{\begin{aligned}&\sum \limits _{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0}\left|\cdot \sum \limits _{l}{{{A}_{l}}^{*}}\right.\\&\sum \limits _{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}-}{{\omega }^{2}}\sum \limits _{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=0\\&{{\omega }^{2}}={\frac {\sum \limits _{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}}{\sum \limits _{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}}}\\&\sum \limits _{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}={\frac {1}{2}}\sum \limits _{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}+{\frac {1}{2}}\sum \limits _{l,k}{{{V}_{kl}}{{A}_{k}}^{*}{{A}_{l}}=}{\frac {1}{2}}\sum \limits _{l,k}{{{V}_{lk}}\left({{A}_{l}}^{*}{{A}_{k}}+{{A}_{k}}^{*}{{A}_{l}}\right)=}{\frac {1}{2}}\sum \limits _{l,k}{{{V}_{lk}}2\cdot \operatorname {Re} \left({{A}_{l}}^{*}{{A}_{k}}\right)}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (7.642 KB / 667 B) :

k(Vlkω2Tlk)Ak=0|lAl*l,kVlkAl*Akω2l,kTlkAl*Ak=0ω2=l,kVlkAl*Akl,kTlkAl*Akl,kVlkAl*Ak=12l,kVlkAl*Ak+12l,kVklAk*Al=12l,kVlk(Al*Ak+Ak*Al)=12l,kVlk2(Al*Ak)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo>&#x2212;</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo stretchy="false">)</mo><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mo>&#x22C5;</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munder><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo></mrow><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>l</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo>=</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mn>2</mn><mo>&#x22C5;</mo><mi data-mjx-texclass="OP" mathvariant="normal">&#x211C;</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • k
  • Vlk
  • ω
  • Tlk
  • Ak
  • l
  • Al
  • l
  • k
  • Vlk
  • Al
  • Ak
  • ω
  • l
  • k
  • Tlk
  • Al
  • Ak
  • ω
  • l
  • k
  • Vlk
  • Al
  • Ak
  • l
  • k
  • Tlk
  • Al
  • Ak
  • l
  • k
  • Vlk
  • Al
  • Ak
  • l
  • k
  • Vlk
  • Al
  • Ak
  • l
  • k
  • Vkl
  • Ak
  • Al
  • l
  • k
  • Vlk
  • Al
  • Ak
  • Ak
  • Al
  • l
  • k
  • Vlk
  • Al
  • Ak

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results