Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1255.159 on revision:1255
* Page found: Das d'Alembertsche Prinzip (eq math.1255.159)
(force rerendering)Occurrences on the following pages:
Hash: 529a8a7debd9b79249f530da06bffc90
TeX (original user input):
\begin{align}
& \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{*}} \right. \\
& \sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}-}{{\omega }^{2}}\sum\limits_{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=0 \\
& {{\omega }^{2}}=\frac{\sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}}{\sum\limits_{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}} \\
& \sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=\frac{1}{2}\sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}+\frac{1}{2}\sum\limits_{l,k}{{{V}_{kl}}{{A}_{k}}^{*}{{A}_{l}}=}\frac{1}{2}\sum\limits_{l,k}{{{V}_{lk}}\left( {{A}_{l}}^{*}{{A}_{k}}+{{A}_{k}}^{*}{{A}_{l}} \right)=}\frac{1}{2}\sum\limits_{l,k}{{{V}_{lk}}2\cdot \operatorname{Re}\left( {{A}_{l}}^{*}{{A}_{k}} \right)} \\
\end{align}
TeX (checked):
{\begin{aligned}&\sum \limits _{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0}\left|\cdot \sum \limits _{l}{{{A}_{l}}^{*}}\right.\\&\sum \limits _{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}-}{{\omega }^{2}}\sum \limits _{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=0\\&{{\omega }^{2}}={\frac {\sum \limits _{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}}{\sum \limits _{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}}}\\&\sum \limits _{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}={\frac {1}{2}}\sum \limits _{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}+{\frac {1}{2}}\sum \limits _{l,k}{{{V}_{kl}}{{A}_{k}}^{*}{{A}_{l}}=}{\frac {1}{2}}\sum \limits _{l,k}{{{V}_{lk}}\left({{A}_{l}}^{*}{{A}_{k}}+{{A}_{k}}^{*}{{A}_{l}}\right)=}{\frac {1}{2}}\sum \limits _{l,k}{{{V}_{lk}}2\cdot \operatorname {Re} \left({{A}_{l}}^{*}{{A}_{k}}\right)}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (7.642 KB / 667 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo>−</mo><msup><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo stretchy="false">)</mo><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mo>⋅</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munder><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>−</mo></mrow><msup><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>l</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo>=</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mn>2</mn><mo>⋅</mo><mi data-mjx-texclass="OP" mathvariant="normal">ℜ</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results