Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.152 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.152)

(force rerendering)

Occurrences on the following pages:

Hash: 9cf083457048b0675a466a6ddd5e3f52

TeX (original user input):

\begin{align}
  & {{T}_{11}}=m\left( {{\sin }^{2}}\vartheta {{\cos }^{2}}\phi +{{\sin }^{2}}\vartheta {{\sin }^{2}}\phi +{{\cos }^{2}}\vartheta  \right)=m \\
 & {{T}_{22}}=m{{r}^{2}}\left( {{\cos }^{2}}\vartheta {{\cos }^{2}}\phi +{{\cos }^{2}}\vartheta {{\sin }^{2}}\phi +{{\sin }^{2}}\vartheta  \right)=m{{r}^{2}} \\
 & {{T}_{33}}=m{{r}^{2}}({{\sin }^{2}}\vartheta {{\sin }^{2}}\phi +{{\sin }^{2}}\vartheta {{\cos }^{2}}\phi )=m{{r}^{2}}{{\sin }^{2}}\vartheta  \\
\end{align}

TeX (checked):

{\begin{aligned}&{{T}_{11}}=m\left({{\sin }^{2}}\vartheta {{\cos }^{2}}\phi +{{\sin }^{2}}\vartheta {{\sin }^{2}}\phi +{{\cos }^{2}}\vartheta \right)=m\\&{{T}_{22}}=m{{r}^{2}}\left({{\cos }^{2}}\vartheta {{\cos }^{2}}\phi +{{\cos }^{2}}\vartheta {{\sin }^{2}}\phi +{{\sin }^{2}}\vartheta \right)=m{{r}^{2}}\\&{{T}_{33}}=m{{r}^{2}}({{\sin }^{2}}\vartheta {{\sin }^{2}}\phi +{{\sin }^{2}}\vartheta {{\cos }^{2}}\phi )=m{{r}^{2}}{{\sin }^{2}}\vartheta \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.864 KB / 424 B) :

T11=m(sin2ϑcos2ϕ+sin2ϑsin2ϕ+cos2ϑ)=mT22=mr2(cos2ϑcos2ϕ+cos2ϑsin2ϕ+sin2ϑ)=mr2T33=mr2(sin2ϑsin2ϕ+sin2ϑcos2ϕ)=mr2sin2ϑ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>1</mn></mrow></mrow></msub><mo>=</mo><mi>m</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D5;</mi><mo>+</mo><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D5;</mi><mo>+</mo><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>m</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>2</mn></mrow></mrow></msub><mo>=</mo><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D5;</mi><mo>+</mo><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D5;</mi><mo>+</mo><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mn>3</mn></mrow></mrow></msub><mo>=</mo><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">(</mo><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D5;</mi><mo>+</mo><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D5;</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • T11
  • m
  • ϑ
  • ϕ
  • ϑ
  • ϕ
  • ϑ
  • m
  • T22
  • m
  • r
  • ϑ
  • ϕ
  • ϑ
  • ϕ
  • ϑ
  • m
  • r
  • T33
  • m
  • r
  • ϑ
  • ϕ
  • ϑ
  • ϕ
  • m
  • r
  • ϑ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results