Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.150 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.150)

(force rerendering)

Occurrences on the following pages:

Hash: 4ee8174de78b769609781d9794288bd5

TeX (original user input):

\left( \begin{matrix}
   \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \vartheta } & \frac{\partial x}{\partial \phi }  \\
   \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \vartheta } & \frac{\partial y}{\partial \phi }  \\
   \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \vartheta } & \frac{\partial z}{\partial \phi }  \\
\end{matrix} \right)=\left( \begin{matrix}
   \sin \vartheta \cos \phi  & r\cos \vartheta \cos \phi  & -r\sin \vartheta \sin \phi   \\
   in\vartheta \sin \phi  & r\cos \vartheta \sin \phi  & r\sin \vartheta \cos \phi   \\
   \cos \vartheta  & -r\sin \vartheta  & 0  \\
\end{matrix} \right)

TeX (checked):

\left({\begin{matrix}{\frac {\partial x}{\partial r}}&{\frac {\partial x}{\partial \vartheta }}&{\frac {\partial x}{\partial \phi }}\\{\frac {\partial y}{\partial r}}&{\frac {\partial y}{\partial \vartheta }}&{\frac {\partial y}{\partial \phi }}\\{\frac {\partial z}{\partial r}}&{\frac {\partial z}{\partial \vartheta }}&{\frac {\partial z}{\partial \phi }}\\\end{matrix}}\right)=\left({\begin{matrix}\sin \vartheta \cos \phi &r\cos \vartheta \cos \phi &-r\sin \vartheta \sin \phi \\in\vartheta \sin \phi &r\cos \vartheta \sin \phi &r\sin \vartheta \cos \phi \\\cos \vartheta &-r\sin \vartheta &0\\\end{matrix}}\right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.855 KB / 418 B) :

(xrxϑxϕyryϑyϕzrzϑzϕ)=(sinϑcosϕrcosϑcosϕrsinϑsinϕinϑsinϕrcosϑsinϕrsinϑcosϕcosϑrsinϑ0)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D5;</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D5;</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D5;</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mi>r</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mo>&#x2212;</mo><mi>r</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd></mtr><mtr><mtd><mi>i</mi><mi>n</mi><mi>&#x03D1;</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mi>r</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mi>r</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mtd><mtd><mo>&#x2212;</mo><mi>r</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • x
  • r
  • x
  • ϑ
  • x
  • ϕ
  • y
  • r
  • y
  • ϑ
  • y
  • ϕ
  • z
  • r
  • z
  • ϑ
  • z
  • ϕ
  • ϑ
  • ϕ
  • r
  • ϑ
  • ϕ
  • r
  • ϑ
  • ϕ
  • i
  • n
  • ϑ
  • ϕ
  • r
  • ϑ
  • ϕ
  • r
  • ϑ
  • ϕ
  • ϑ
  • r
  • ϑ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results