Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1255.150 on revision:1255
* Page found: Das d'Alembertsche Prinzip (eq math.1255.150)
(force rerendering)Occurrences on the following pages:
Hash: 4ee8174de78b769609781d9794288bd5
TeX (original user input):
\left( \begin{matrix}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \vartheta } & \frac{\partial x}{\partial \phi } \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \vartheta } & \frac{\partial y}{\partial \phi } \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \vartheta } & \frac{\partial z}{\partial \phi } \\
\end{matrix} \right)=\left( \begin{matrix}
\sin \vartheta \cos \phi & r\cos \vartheta \cos \phi & -r\sin \vartheta \sin \phi \\
in\vartheta \sin \phi & r\cos \vartheta \sin \phi & r\sin \vartheta \cos \phi \\
\cos \vartheta & -r\sin \vartheta & 0 \\
\end{matrix} \right)
TeX (checked):
\left({\begin{matrix}{\frac {\partial x}{\partial r}}&{\frac {\partial x}{\partial \vartheta }}&{\frac {\partial x}{\partial \phi }}\\{\frac {\partial y}{\partial r}}&{\frac {\partial y}{\partial \vartheta }}&{\frac {\partial y}{\partial \phi }}\\{\frac {\partial z}{\partial r}}&{\frac {\partial z}{\partial \vartheta }}&{\frac {\partial z}{\partial \phi }}\\\end{matrix}}\right)=\left({\begin{matrix}\sin \vartheta \cos \phi &r\cos \vartheta \cos \phi &-r\sin \vartheta \sin \phi \\in\vartheta \sin \phi &r\cos \vartheta \sin \phi &r\sin \vartheta \cos \phi \\\cos \vartheta &-r\sin \vartheta &0\\\end{matrix}}\right)
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (3.855 KB / 418 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>r</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϑ</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϕ</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>r</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϑ</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϕ</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>r</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϑ</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϕ</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>sin</mi><mo>⁡</mo><mi>ϑ</mi><mi>cos</mi><mo>⁡</mo><mi>ϕ</mi></mtd><mtd><mi>r</mi><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi><mi>cos</mi><mo>⁡</mo><mi>ϕ</mi></mtd><mtd><mo>−</mo><mi>r</mi><mi>sin</mi><mo>⁡</mo><mi>ϑ</mi><mi>sin</mi><mo>⁡</mo><mi>ϕ</mi></mtd></mtr><mtr><mtd><mi>i</mi><mi>n</mi><mi>ϑ</mi><mi>sin</mi><mo>⁡</mo><mi>ϕ</mi></mtd><mtd><mi>r</mi><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi><mi>sin</mi><mo>⁡</mo><mi>ϕ</mi></mtd><mtd><mi>r</mi><mi>sin</mi><mo>⁡</mo><mi>ϑ</mi><mi>cos</mi><mo>⁡</mo><mi>ϕ</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi></mtd><mtd><mo>−</mo><mi>r</mi><mi>sin</mi><mo>⁡</mo><mi>ϑ</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results