Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.149 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.149)

(force rerendering)

Occurrences on the following pages:

Hash: ad121a07851049a4c7d3f1c3f7f685c5

TeX (original user input):

\begin{align}
  & {{v}_{x}}=\frac{dx}{dt}=\frac{\partial x}{\partial r}\dot{r}+\frac{\partial x}{\partial \vartheta }\dot{\vartheta }+\frac{\partial x}{\partial \phi }\dot{\phi }=\sin \vartheta \cos \phi \dot{r}+r\cos \vartheta \cos \phi \dot{\vartheta }-r\sin \vartheta \sin \phi \dot{\phi } \\
 & {{v}_{y}}=\frac{dy}{dt}=\frac{\partial y}{\partial r}\dot{r}+\frac{\partial y}{\partial \vartheta }\dot{\vartheta }+\frac{\partial y}{\partial \phi }\dot{\phi }=\sin \vartheta \sin \phi \dot{r}+r\cos \vartheta \sin \phi \dot{\vartheta }+r\sin \vartheta \cos \phi \dot{\phi } \\
 & {{v}_{z}}=\frac{dz}{dt}=\frac{\partial z}{\partial r}\dot{r}+\frac{\partial z}{\partial \vartheta }\dot{\vartheta }+\frac{\partial z}{\partial \phi }\dot{\phi }=\cos \vartheta \dot{r}-r\sin \vartheta \dot{\vartheta } \\
 &  \\
\end{align}

TeX (checked):

{\begin{aligned}&{{v}_{x}}={\frac {dx}{dt}}={\frac {\partial x}{\partial r}}{\dot {r}}+{\frac {\partial x}{\partial \vartheta }}{\dot {\vartheta }}+{\frac {\partial x}{\partial \phi }}{\dot {\phi }}=\sin \vartheta \cos \phi {\dot {r}}+r\cos \vartheta \cos \phi {\dot {\vartheta }}-r\sin \vartheta \sin \phi {\dot {\phi }}\\&{{v}_{y}}={\frac {dy}{dt}}={\frac {\partial y}{\partial r}}{\dot {r}}+{\frac {\partial y}{\partial \vartheta }}{\dot {\vartheta }}+{\frac {\partial y}{\partial \phi }}{\dot {\phi }}=\sin \vartheta \sin \phi {\dot {r}}+r\cos \vartheta \sin \phi {\dot {\vartheta }}+r\sin \vartheta \cos \phi {\dot {\phi }}\\&{{v}_{z}}={\frac {dz}{dt}}={\frac {\partial z}{\partial r}}{\dot {r}}+{\frac {\partial z}{\partial \vartheta }}{\dot {\vartheta }}+{\frac {\partial z}{\partial \phi }}{\dot {\phi }}=\cos \vartheta {\dot {r}}-r\sin \vartheta {\dot {\vartheta }}\\&\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.513 KB / 496 B) :

vx=dxdt=xrr˙+xϑϑ˙+xϕϕ˙=sinϑcosϕr˙+rcosϑcosϕϑ˙rsinϑsinϕϕ˙vy=dydt=yrr˙+yϑϑ˙+yϕϕ˙=sinϑsinϕr˙+rcosϑsinϕϑ˙+rsinϑcosϕϕ˙vz=dzdt=zrr˙+zϑϑ˙+zϕϕ˙=cosϑr˙rsinϑϑ˙
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D1;</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D5;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mi>r</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D1;</mi><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>r</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>˙</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D1;</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>y</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D5;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mi>r</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D1;</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mi>r</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>˙</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D1;</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D5;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>r</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D1;</mi><mo>˙</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • vx
  • d
  • x
  • d
  • t
  • x
  • r
  • r˙
  • x
  • ϑ
  • ϑ˙
  • x
  • ϕ
  • ϕ˙
  • ϑ
  • ϕ
  • r˙
  • r
  • ϑ
  • ϕ
  • ϑ˙
  • r
  • ϑ
  • ϕ
  • ϕ˙
  • vy
  • d
  • y
  • d
  • t
  • y
  • r
  • r˙
  • y
  • ϑ
  • ϑ˙
  • y
  • ϕ
  • ϕ˙
  • ϑ
  • ϕ
  • r˙
  • r
  • ϑ
  • ϕ
  • ϑ˙
  • r
  • ϑ
  • ϕ
  • ϕ˙
  • vz
  • d
  • z
  • d
  • t
  • z
  • r
  • r˙
  • z
  • ϑ
  • ϑ˙
  • z
  • ϕ
  • ϕ˙
  • ϑ
  • r˙
  • r
  • ϑ
  • ϑ˙

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results