Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.137 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.137)

(force rerendering)

Occurrences on the following pages:

Hash: 671c5f754b6c36fd02da29e702ba5b23

TeX (original user input):

\begin{align}
  & \vec{L}=m\vec{v}\times \vec{r} \\
 & {{{\vec{L}}}_{o}}=m{{\omega }_{o}}^{{}}{{R}_{o}}^{2}\quad {{v}_{o}}={{\omega }_{o}}{{R}_{o}}\quad {{r}_{o}}={{R}_{o}} \\
 & andererseits: \\
 & {{\omega }_{o}}=\frac{con\tilde{s}}{{{({{R}_{o}})}^{2}}} \\
 & \Rightarrow \omega =\frac{con\tilde{s}}{{{({{R}_{o}}-ct)}^{2}}}\Rightarrow con\tilde{s}=\frac{{{{\vec{L}}}_{o}}}{m} \\
 & \omega =\frac{{{{\vec{L}}}_{o}}}{m{{({{R}_{o}}-ct)}^{2}}}=\dot{q} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\vec {L}}=m{\vec {v}}\times {\vec {r}}\\&{{\vec {L}}_{o}}=m{{\omega }_{o}}^{}{{R}_{o}}^{2}\quad {{v}_{o}}={{\omega }_{o}}{{R}_{o}}\quad {{r}_{o}}={{R}_{o}}\\&andererseits:\\&{{\omega }_{o}}={\frac {con{\tilde {s}}}{{({{R}_{o}})}^{2}}}\\&\Rightarrow \omega ={\frac {con{\tilde {s}}}{{({{R}_{o}}-ct)}^{2}}}\Rightarrow con{\tilde {s}}={\frac {{\vec {L}}_{o}}{m}}\\&\omega ={\frac {{\vec {L}}_{o}}{m{{({{R}_{o}}-ct)}^{2}}}}={\dot {q}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.337 KB / 571 B) :

L=mv×rLo=mωoRo2vo=ωoRoro=Roandererseits:ωo=cons~(Ro)2ω=cons~(Roct)2cons~=Lomω=Lom(Roct)2=q˙
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo></mo></mover></mrow></mrow><mo>=</mo><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo></mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>=</mo><mi>m</mi><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mrow data-mjx-texclass="ORD"></mrow></msup><msup><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mspace width="1em"></mspace><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>=</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mspace width="1em"></mspace><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>=</mo><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>a</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>r</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>e</mi><mi>i</mi><mi>t</mi><mi>s</mi><mi>:</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>c</mi><mi>o</mi><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>~</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>&#x03C9;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>c</mi><mi>o</mi><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>~</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>&#x2212;</mo><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>&#x21D2;</mo><mi>c</mi><mi>o</mi><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>~</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03C9;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>&#x2212;</mo><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • L
  • m
  • v
  • r
  • Lo
  • m
  • ωo
  • Ro
  • vo
  • ωo
  • Ro
  • ro
  • Ro
  • a
  • n
  • d
  • e
  • r
  • e
  • r
  • s
  • e
  • i
  • t
  • s
  • ωo
  • c
  • o
  • n
  • s~
  • Ro
  • ω
  • c
  • o
  • n
  • s~
  • Ro
  • c
  • t
  • c
  • o
  • n
  • s~
  • Lo
  • m
  • ω
  • Lo
  • m
  • Ro
  • c
  • t
  • q˙

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results