Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.131 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.131)

(force rerendering)

Occurrences on the following pages:

Hash: 7eca4aaef8f306b7b399b1d6a57f35ee

TeX (original user input):

\begin{align}
  & T({{q}_{{}}},{{{\dot{q}}}_{{}}},t)=\frac{1}{2}({{m}_{{{1}_{{}}}}}+{{m}_{2}}){{{\dot{q}}}^{2}} \\
 & V(q,\dot{q},t)={{m}_{1}}gq+{{m}_{2}}(l-q)g \\
 & \frac{\partial L}{\partial q}={{m}_{1}}g-{{m}_{2}}g \\
 & \frac{\partial L}{\partial \dot{q}}=({{m}_{1}}+{{m}_{2}})\dot{q} \\
 & ({{m}_{1}}+{{m}_{2}})\ddot{q}+{{m}_{1}}g-{{m}_{2}}g=0 \\
 &  \\
\end{align}

TeX (checked):

{\begin{aligned}&T({{q}_{}},{{\dot {q}}_{}},t)={\frac {1}{2}}({{m}_{{1}_{}}}+{{m}_{2}}){{\dot {q}}^{2}}\\&V(q,{\dot {q}},t)={{m}_{1}}gq+{{m}_{2}}(l-q)g\\&{\frac {\partial L}{\partial q}}={{m}_{1}}g-{{m}_{2}}g\\&{\frac {\partial L}{\partial {\dot {q}}}}=({{m}_{1}}+{{m}_{2}}){\dot {q}}\\&({{m}_{1}}+{{m}_{2}}){\ddot {q}}+{{m}_{1}}g-{{m}_{2}}g=0\\&\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.565 KB / 508 B) :

T(q,q˙,t)=12(m1+m2)q˙2V(q,q˙,t)=m1gq+m2(lq)gLq=m1gm2gLq˙=(m1+m2)q˙(m1+m2)q¨+m1gm2g=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>T</mi><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo stretchy="false">(</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><msub><mn>1</mn><mrow data-mjx-texclass="ORD"></mrow></msub></mrow></msub><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>V</mi><mo stretchy="false">(</mo><mi>q</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mi>g</mi><mi>q</mi><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mi>l</mi><mo>&#x2212;</mo><mi>q</mi><mo stretchy="false">)</mo><mi>g</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>q</mi></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mi>g</mi><mo>&#x2212;</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mi>g</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo>=</mo><mo stretchy="false">(</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo stretchy="false">(</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¨</mo></mover></mrow></mrow><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mi>g</mi><mo>&#x2212;</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mi>g</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • T
  • q
  • q˙
  • t
  • m
  • m2
  • q˙
  • V
  • q
  • q˙
  • t
  • m1
  • g
  • q
  • m2
  • l
  • q
  • g
  • L
  • q
  • m1
  • g
  • m2
  • g
  • L
  • q˙
  • m1
  • m2
  • q˙
  • m1
  • m2
  • q¨
  • m1
  • g
  • m2
  • g

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results