Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1255.129 on revision:1255

* Page found: Das d'Alembertsche Prinzip (eq math.1255.129)

(force rerendering)

Occurrences on the following pages:

Hash: 25afb7d8e2f14dbe84ba9234516ac832

TeX (original user input):

\begin{align}
  & T({{q}_{k}},{{{\dot{q}}}_{k}},t)=\frac{1}{2}\sum\limits_{i=1}^{N}{{{m}_{i}}{{\left( \sum\limits_{k=1}^{f}{\frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial {{{\vec{r}}}_{i}}}{\partial t}} \right)}^{2}}} \\
 & T({{q}_{k}},{{{\dot{q}}}_{k}},t)=a+\sum\limits_{k=1}^{f}{{{b}_{k}}{{{\dot{q}}}_{k}}}+\sum\limits_{k,l=1}^{f}{{{c}_{kl}}{{{\dot{q}}}_{k}}{{{\dot{q}}}_{l}}} \\
\end{align}

TeX (checked):

{\begin{aligned}&T({{q}_{k}},{{\dot {q}}_{k}},t)={\frac {1}{2}}\sum \limits _{i=1}^{N}{{{m}_{i}}{{\left(\sum \limits _{k=1}^{f}{{\frac {\partial {{\vec {r}}_{i}}}{\partial {{q}_{k}}}}{{\dot {q}}_{k}}+{\frac {\partial {{\vec {r}}_{i}}}{\partial t}}}\right)}^{2}}}\\&T({{q}_{k}},{{\dot {q}}_{k}},t)=a+\sum \limits _{k=1}^{f}{{{b}_{k}}{{\dot {q}}_{k}}}+\sum \limits _{k,l=1}^{f}{{{c}_{kl}}{{\dot {q}}_{k}}{{\dot {q}}_{l}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.31 KB / 572 B) :

T(qk,q˙k,t)=12i=1Nmi(k=1friqkq˙k+rit)2T(qk,q˙k,t)=a+k=1fbkq˙k+k,l=1fcklq˙kq˙l
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>T</mi><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>T</mi><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi><mo>+</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>+</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>,</mo><mi>l</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>l</mi></mrow></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • T
  • qk
  • q˙k
  • t
  • i
  • N
  • mi
  • k
  • f
  • ri
  • qk
  • q˙k
  • ri
  • t
  • T
  • qk
  • q˙k
  • t
  • a
  • k
  • f
  • bk
  • q˙k
  • k
  • l
  • f
  • ckl
  • q˙k
  • q˙l

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results