Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1254.403 on revision:1254

* Page found: Das d'Alembertsche Prinzip (eq math.1254.403)

(force rerendering)

Occurrences on the following pages:

Hash: 7ac92e16f89d50380e301fb8d4b3ea1b

TeX (original user input):

{{\bar{r}}_{i}}\acute{\ }={{\bar{\bar{R}}}_{z}}(\phi ){{\bar{r}}_{i}}=\left( \begin{matrix}
   \cos \phi  & \sin \phi  & 0  \\
   -\sin \phi  & \cos \phi  & 0  \\
   0 & 0 & 1  \\
\end{matrix} \right){{\bar{r}}_{i}}

TeX (checked):

{{\bar {r}}_{i}}{\acute {\ }}={{\bar {\bar {R}}}_{z}}(\phi ){{\bar {r}}_{i}}=\left({\begin{matrix}\cos \phi &\sin \phi &0\\-\sin \phi &\cos \phi &0\\0&0&1\\\end{matrix}}\right){{\bar {r}}_{i}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (1.758 KB / 419 B) :

r¯i´=R¯¯z(ϕ)r¯i=(cosϕsinϕ0sinϕcosϕ0001)r¯i
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>R</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub><mo stretchy="false">(</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • r¯i
  • ´
  • R¯¯z
  • ϕ
  • r¯i
  • ϕ
  • ϕ
  • ϕ
  • ϕ
  • r¯i

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results