Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1254.201 on revision:1254
* Page found: Das d'Alembertsche Prinzip (eq math.1254.201)
(force rerendering)Occurrences on the following pages:
Hash: e2c5cc8fd671c75275b071f043f51b1e
TeX (original user input):
V\approx \frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\sum\limits_{j,k=1}^{2}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\quad Forderung!}
TeX (checked):
V\approx {\frac {1}{2}}{\frac {g}{l}}m{{q}_{1}}^{2}+{\frac {1}{2}}{\frac {g}{l}}m{{q}_{2}}^{2}+{\frac {1}{2}}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\sum \limits _{j,k=1}^{2}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\quad Forderung!}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (2.168 KB / 415 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>V</mi><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mi>m</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mi>m</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>k</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi></mrow></mrow></msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mspace width="1em"></mspace><mi>F</mi><mi>o</mi><mi>r</mi><mi>d</mi><mi>e</mi><mi>r</mi><mi>u</mi><mi>n</mi><mi>g</mi><mi>!</mi></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results