Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1254.193 on revision:1254

* Page found: Das d'Alembertsche Prinzip (eq math.1254.193)

(force rerendering)

Occurrences on the following pages:

Hash: c6473432e51058a786ca043528417e91

TeX (original user input):

\begin{align}
  & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}-{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}){{A}_{k}}^{a}=0} \\ 
 & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}{{A}_{k}}^{a})=\sum\limits_{k,l}{{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}{{A}_{k}}^{a}}}={{\omega }_{a}}^{2}{{\delta }_{ab}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\sum \limits _{k,l}{({{A}_{l}}^{b}{{V}_{lk}}-{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}){{A}_{k}}^{a}=0}\\&\sum \limits _{k,l}{({{A}_{l}}^{b}{{V}_{lk}}{{A}_{k}}^{a})=\sum \limits _{k,l}{{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}{{A}_{k}}^{a}}}={{\omega }_{a}}^{2}{{\delta }_{ab}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.103 KB / 442 B) :

k,l(AlbVlkωa2AlbTlk)Aka=0k,l(AlbVlkAka)=k,lωa2AlbTlkAka=ωa2δab
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>,</mo><mi>l</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo>&#x2212;</mo><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo stretchy="false">)</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><mo>=</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>,</mo><mi>l</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><mo stretchy="false">)</mo><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>,</mo><mi>l</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup></mrow></mrow><mo>=</mo><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mi>b</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • k
  • l
  • Al
  • b
  • Vlk
  • ωa
  • Al
  • b
  • Tlk
  • Ak
  • a
  • k
  • l
  • Al
  • b
  • Vlk
  • Ak
  • a
  • k
  • l
  • ωa
  • Al
  • b
  • Tlk
  • Ak
  • a
  • ωa
  • δab

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results