Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1254.188 on revision:1254

* Page found: Das d'Alembertsche Prinzip (eq math.1254.188)

(force rerendering)

Occurrences on the following pages:

Hash: 8ab7ee5ea2bbef4e0d139227782c6fd7

TeX (original user input):

\begin{align}
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{b}} \right. \\ 
 & \sum\limits_{l}{({{V}_{kl}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{l}}^{b}=0\left| \cdot \sum\limits_{k}{{{A}_{k}}^{b}} \right.} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\sum \limits _{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left|\cdot \sum \limits _{l}{{{A}_{l}}^{b}}\right.\\&\sum \limits _{l}{({{V}_{kl}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{l}}^{b}=0\left|\cdot \sum \limits _{k}{{{A}_{k}}^{b}}\right.}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.723 KB / 499 B) :

k(Vlkωa2Tlk)Aka=0|lAlbl(Vklωb2Tkl)Alb=0|kAkb
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo>&#x2212;</mo><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo stretchy="false">)</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><mo>=</mo><mn>0</mn></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mo>&#x22C5;</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munder><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>l</mi></mrow></mrow></msub><mo>&#x2212;</mo><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">)</mo><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><mo>=</mo><mn>0</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mo>&#x22C5;</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • k
  • Vlk
  • ωa
  • Tlk
  • Ak
  • a
  • l
  • Al
  • b
  • l
  • Vkl
  • ωb
  • Tkl
  • Al
  • b
  • k
  • Ak
  • b

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results