Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1254.142 on revision:1254
* Page found: Das d'Alembertsche Prinzip (eq math.1254.142)
(force rerendering)Occurrences on the following pages:
Hash: 7cafab0117ec90ed2f9f25af514aed02
TeX (original user input):
\begin{align}
& -\frac{\partial V}{\partial {{q}_{j}}}={{Q}_{j}} \\
& V({{q}_{1}},...,{{q}_{f}},t)=V({{{\vec{r}}}_{1}}({{q}_{1,}}...,{{q}_{f}},t),...,{{{\vec{r}}}_{N}}({{q}_{1,}}...,{{q}_{f}},t)) \\
\end{align}
TeX (checked):
{\begin{aligned}&-{\frac {\partial V}{\partial {{q}_{j}}}}={{Q}_{j}}\\&V({{q}_{1}},...,{{q}_{f}},t)=V({{\vec {r}}_{1}}({{q}_{1,}}...,{{q}_{f}},t),...,{{\vec {r}}_{N}}({{q}_{1,}}...,{{q}_{f}},t))\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (2.19 KB / 419 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>V</mi><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>V</mi><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>,</mo></mrow></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>,</mo></mrow></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results