Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.999 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.999)

(force rerendering)

Occurrences on the following pages:

Hash: a4aa7ffb47e8a07d4c9d36579d7e1c89

TeX (original user input):

\begin{align}
& \begin{matrix}
\lim   \\
h->0  \\
\end{matrix}\int_{V}^{{}}{{}}{{d}^{3}}r\frac{\partial }{\partial t}\bar{B}=0 \\
& \begin{matrix}
\lim   \\
h->0  \\
\end{matrix}\int_{V}^{{}}{{}}{{d}^{3}}r\frac{\partial }{\partial t}\bar{D}=0 \\
& \begin{matrix}
\lim   \\
h->0  \\
\end{matrix}\int_{V}^{{}}{{}}{{d}^{3}}r\left( \bar{j}+\frac{\partial }{\partial t}\bar{D} \right)=\int_{F}^{{}}{{}}df\bar{g}(x,y,t) \\
& \oint\limits_{\partial V}{{}}df\bar{n}\times \left( {{{\bar{E}}}^{(1)}}-{{{\bar{E}}}^{(2)}} \right)=0 \\
& \oint\limits_{\partial V}{{}}df\bar{n}\times \left( H{{\left( \bar{r},t \right)}^{(1)}}-H{{\left( \bar{r},t \right)}^{(2)}} \right)=\int_{F}^{{}}{{}}df\bar{g}(x,y,t) \\
\end{align}

TeX (checked):

{\begin{aligned}&{\begin{matrix}\lim \\h->0\\\end{matrix}}\int _{V}^{}{}{{d}^{3}}r{\frac {\partial }{\partial t}}{\bar {B}}=0\\&{\begin{matrix}\lim \\h->0\\\end{matrix}}\int _{V}^{}{}{{d}^{3}}r{\frac {\partial }{\partial t}}{\bar {D}}=0\\&{\begin{matrix}\lim \\h->0\\\end{matrix}}\int _{V}^{}{}{{d}^{3}}r\left({\bar {j}}+{\frac {\partial }{\partial t}}{\bar {D}}\right)=\int _{F}^{}{}df{\bar {g}}(x,y,t)\\&\oint \limits _{\partial V}{}df{\bar {n}}\times \left({{\bar {E}}^{(1)}}-{{\bar {E}}^{(2)}}\right)=0\\&\oint \limits _{\partial V}{}df{\bar {n}}\times \left(H{{\left({\bar {r}},t\right)}^{(1)}}-H{{\left({\bar {r}},t\right)}^{(2)}}\right)=\int _{F}^{}{}df{\bar {g}}(x,y,t)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.246 KB / 627 B) :

limh>0Vd3rtB¯=0limh>0Vd3rtD¯=0limh>0Vd3r(j¯+tD¯)=Fdfg¯(x,y,t)Vdfn¯×(E¯(1)E¯(2))=0Vdfn¯×(H(r¯,t)(1)H(r¯,t)(2))=Fdfg¯(x,y,t)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>h</mi><mo>&#x2212;</mo><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>h</mi><mo>&#x2212;</mo><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>h</mi><mo>&#x2212;</mo><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>F</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow></munder><mi>d</mi><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow></munder><mi>d</mi><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>H</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>&#x2212;</mo><mi>H</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>F</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • h
  • V
  • r
  • t
  • B¯
  • h
  • V
  • r
  • t
  • D¯
  • h
  • V
  • r
  • j¯
  • t
  • D¯
  • F
  • f
  • g¯
  • x
  • y
  • t
  • V
  • d
  • f
  • n¯
  • E¯
  • E¯
  • V
  • d
  • f
  • n¯
  • H
  • r¯
  • t
  • H
  • r¯
  • t
  • F
  • f
  • g¯
  • x
  • y
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results