Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.983 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.983)

(force rerendering)

Occurrences on the following pages:

Hash: 690149f1bccd08a5997b4c5938a9edce

TeX (original user input):

\begin{align}
& \rho \left( \bar{r},t \right)=\sigma \left( x,y,t \right)\delta \left( z \right) \\
& {{{\bar{e}}}_{z}}\equiv \bar{n} \\
& \Rightarrow \begin{matrix}
\lim   \\
h->0  \\
\end{matrix}\int_{V}^{{}}{{}}{{d}^{3}}r\rho \left( \bar{r},t \right)=Q=\int_{F}^{{}}{{}}df\sigma \left( x,y,t \right) \\
& \begin{matrix}
\lim   \\
h->0  \\
\end{matrix}\oint\limits_{\partial V}{{}}d\bar{f}\cdot \bar{D}\left( \bar{r},t \right)=\int_{F}^{{}}{{}}d\bar{f}\left( {{{\bar{D}}}^{(1)}}-{{{\bar{D}}}^{(2)}} \right)=\int_{F}^{{}}{{}}df\bar{n}\left( {{{\bar{D}}}^{(1)}}-{{{\bar{D}}}^{(2)}} \right)=\int_{F}^{{}}{{}}df\sigma \left( x,y,t \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&\rho \left({\bar {r}},t\right)=\sigma \left(x,y,t\right)\delta \left(z\right)\\&{{\bar {e}}_{z}}\equiv {\bar {n}}\\&\Rightarrow {\begin{matrix}\lim \\h->0\\\end{matrix}}\int _{V}^{}{}{{d}^{3}}r\rho \left({\bar {r}},t\right)=Q=\int _{F}^{}{}df\sigma \left(x,y,t\right)\\&{\begin{matrix}\lim \\h->0\\\end{matrix}}\oint \limits _{\partial V}{}d{\bar {f}}\cdot {\bar {D}}\left({\bar {r}},t\right)=\int _{F}^{}{}d{\bar {f}}\left({{\bar {D}}^{(1)}}-{{\bar {D}}^{(2)}}\right)=\int _{F}^{}{}df{\bar {n}}\left({{\bar {D}}^{(1)}}-{{\bar {D}}^{(2)}}\right)=\int _{F}^{}{}df\sigma \left(x,y,t\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.715 KB / 644 B) :

ρ(r¯,t)=σ(x,y,t)δ(z)e¯zn¯limh>0Vd3rρ(r¯,t)=Q=Fdfσ(x,y,t)limh>0Vdf¯D¯(r¯,t)=Fdf¯(D¯(1)D¯(2))=Fdfn¯(D¯(1)D¯(2))=Fdfσ(x,y,t)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>&#x03C3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>z</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub><mo>&#x2261;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>h</mi><mo>&#x2212;</mo><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>Q</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>F</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mi>f</mi><mi>&#x03C3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>h</mi><mo>&#x2212;</mo><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>F</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>F</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>F</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mi>f</mi><mi>&#x03C3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • ρ
  • r¯
  • t
  • σ
  • x
  • y
  • t
  • δ
  • z
  • e¯z
  • n¯
  • h
  • V
  • r
  • ρ
  • r¯
  • t
  • Q
  • F
  • f
  • σ
  • x
  • y
  • t
  • h
  • V
  • d
  • f¯
  • D¯
  • r¯
  • t
  • F
  • f¯
  • D¯
  • D¯
  • F
  • f
  • n¯
  • D¯
  • D¯
  • F
  • f
  • σ
  • x
  • y
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results