Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.885 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.885)

(force rerendering)

Occurrences on the following pages:

Hash: 17fdba4e64304bdc49c38ebc3872ed63

TeX (original user input):

\begin{align}
& \Phi \left( \bar{r},t \right)=\frac{1}{\Delta V}\int_{\Delta V}^{{}}{{}}{{d}^{3}}s{{\Phi }_{m}}\left( \bar{r}+\bar{s},t \right) \\
& =-\frac{1}{4\pi {{\varepsilon }_{0}}}\frac{1}{\Delta V}\int_{\Delta V}^{{}}{{}}{{d}^{3}}s\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\left\{ \frac{1}{\left| \bar{r}+\bar{s}-\bar{r}\acute{\ } \right|}{{{\bar{P}}}_{m}}\left( \bar{r}\acute{\ },t-\frac{\left| \bar{r}+\bar{s}-\bar{r}\acute{\ } \right|}{c} \right) \right\} \\
& =-\frac{1}{4\pi {{\varepsilon }_{0}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\acute{\ }{{\nabla }_{r}}\left\{ \frac{1}{\left| \bar{r}-\bar{r}\acute{\ }\acute{\ } \right|}\bar{P}\left( \bar{r}\acute{\ }\acute{\ },t-\frac{\left| \bar{r}-\bar{r}\acute{\ }\acute{\ } \right|}{c} \right) \right\} \\
\end{align}

TeX (checked):

{\begin{aligned}&\Phi \left({\bar {r}},t\right)={\frac {1}{\Delta V}}\int _{\Delta V}^{}{}{{d}^{3}}s{{\Phi }_{m}}\left({\bar {r}}+{\bar {s}},t\right)\\&=-{\frac {1}{4\pi {{\varepsilon }_{0}}}}{\frac {1}{\Delta V}}\int _{\Delta V}^{}{}{{d}^{3}}s\int _{{R}^{3}}^{}{}{{d}^{3}}r{\acute {\ }}{{\nabla }_{r}}\left\{{\frac {1}{\left|{\bar {r}}+{\bar {s}}-{\bar {r}}{\acute {\ }}\right|}}{{\bar {P}}_{m}}\left({\bar {r}}{\acute {\ }},t-{\frac {\left|{\bar {r}}+{\bar {s}}-{\bar {r}}{\acute {\ }}\right|}{c}}\right)\right\}\\&=-{\frac {1}{4\pi {{\varepsilon }_{0}}}}\int _{{R}^{3}}^{}{}{{d}^{3}}r{\acute {\ }}{\acute {\ }}{{\nabla }_{r}}\left\{{\frac {1}{\left|{\bar {r}}-{\bar {r}}{\acute {\ }}{\acute {\ }}\right|}}{\bar {P}}\left({\bar {r}}{\acute {\ }}{\acute {\ }},t-{\frac {\left|{\bar {r}}-{\bar {r}}{\acute {\ }}{\acute {\ }}\right|}{c}}\right)\right\}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (8.679 KB / 688 B) :

Φ(r¯,t)=1ΔVΔVd3sΦm(r¯+s¯,t)=14πε01ΔVΔVd3sR3d3r´r{1|r¯+s¯r¯´|P¯m(r¯´,t|r¯+s¯r¯´|c)}=14πε0R3d3r´´r{1|r¯r¯´´|P¯(r¯´´,t|r¯r¯´´|c)}
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x0394;</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x0394;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>s</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x0394;</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x0394;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>s</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • Φ
  • r¯
  • t
  • Δ
  • V
  • Δ
  • V
  • s
  • Φm
  • r¯
  • s¯
  • t
  • π
  • ε0
  • Δ
  • V
  • Δ
  • V
  • s
  • R
  • r
  • ´
  • r
  • r¯
  • s¯
  • r¯
  • ´
  • P¯m
  • r¯
  • ´
  • t
  • r¯
  • s¯
  • r¯
  • ´
  • c
  • π
  • ε0
  • R
  • r
  • ´
  • ´
  • r
  • r¯
  • r¯
  • ´
  • ´
  • P¯
  • r¯
  • ´
  • ´
  • t
  • r¯
  • r¯
  • ´
  • ´
  • c

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results