Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.732 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.732)

(force rerendering)

Occurrences on the following pages:

Hash: 0c99b35a10d1923e27975e008f9fb5f2

TeX (original user input):

\begin{align}
& \bar{B}\left( \bar{r},t \right)\times \frac{{\bar{r}}}{r}=\frac{{{\mu }_{0}}}{4\pi c}\frac{1}{{{r}^{3}}}\left[ \ddot{\bar{p}}\left( t-\frac{r}{c} \right)\times \bar{r} \right]\times \bar{r}=\frac{1}{c}\bar{E}\left( \bar{r},t \right) \\
& \frac{{{\mu }_{0}}}{4\pi c}=\frac{{{\mu }_{0}}{{\varepsilon }_{0}}}{4\pi c{{\varepsilon }_{0}}}=\frac{1}{4\pi {{c}^{3}}{{\varepsilon }_{0}}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\bar {B}}\left({\bar {r}},t\right)\times {\frac {\bar {r}}{r}}={\frac {{\mu }_{0}}{4\pi c}}{\frac {1}{{r}^{3}}}\left[{\ddot {\bar {p}}}\left(t-{\frac {r}{c}}\right)\times {\bar {r}}\right]\times {\bar {r}}={\frac {1}{c}}{\bar {E}}\left({\bar {r}},t\right)\\&{\frac {{\mu }_{0}}{4\pi c}}={\frac {{{\mu }_{0}}{{\varepsilon }_{0}}}{4\pi c{{\varepsilon }_{0}}}}={\frac {1}{4\pi {{c}^{3}}{{\varepsilon }_{0}}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.976 KB / 522 B) :

B¯(r¯,t)×r¯r=μ04πc1r3[p¯¨(trc)×r¯]×r¯=1cE¯(r¯,t)μ04πc=μ0ε04πcε0=14πc3ε0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>c</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>c</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>c</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • B¯
  • r¯
  • t
  • r¯
  • r
  • μ0
  • π
  • c
  • r
  • p¯¨
  • t
  • r
  • c
  • r¯
  • r¯
  • c
  • E¯
  • r¯
  • t
  • μ0
  • π
  • c
  • μ0
  • ε0
  • π
  • c
  • ε0
  • π
  • c
  • ε0

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results