Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.674 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.674)

(force rerendering)

Occurrences on the following pages:

Hash: ac39c3dd37158d419750fc6d0d031699

TeX (original user input):

\Gamma (\bar{q},\tau ):=\int_{-\infty }^{\infty }{d\omega }\frac{{{e}^{-i\omega \tau }}}{\left( {{q}^{2}}-\frac{{{\omega }^{2}}}{{{c}^{2}}} \right)}=\oint\limits_{C}{d\omega }\frac{{{e}^{-i\omega \tau }}}{\left( {{q}^{2}}-\frac{{{\omega }^{2}}}{{{c}^{2}}} \right)}=2\pi i\sum\limits_{Pole}^{{}}{{}}\operatorname{Re}s\frac{{{e}^{-i\omega \tau }}}{\left( {{q}^{2}}-\frac{{{\omega }^{2}}}{{{c}^{2}}} \right)}

TeX (checked):

\Gamma ({\bar {q}},\tau ):=\int _{-\infty }^{\infty }{d\omega }{\frac {{e}^{-i\omega \tau }}{\left({{q}^{2}}-{\frac {{\omega }^{2}}{{c}^{2}}}\right)}}=\oint \limits _{C}{d\omega }{\frac {{e}^{-i\omega \tau }}{\left({{q}^{2}}-{\frac {{\omega }^{2}}{{c}^{2}}}\right)}}=2\pi i\sum \limits _{Pole}^{}{}\operatorname {Re} s{\frac {{e}^{-i\omega \tau }}{\left({{q}^{2}}-{\frac {{\omega }^{2}}{{c}^{2}}}\right)}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.522 KB / 508 B) :

Γ(q¯,τ):=dωeiωτ(q2ω2c2)=Cdωeiωτ(q2ω2c2)=2πiPoleseiωτ(q2ω2c2)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi mathvariant="normal">&#x0393;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>&#x03C4;</mi><mo stretchy="false">)</mo><mi>:</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>&#x03C9;</mi><mi>&#x03C4;</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mi>C</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>&#x03C9;</mi><mi>&#x03C4;</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mn>2</mn><mi>&#x03C0;</mi><mi>i</mi><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>P</mi><mi>o</mi><mi>l</mi><mi>e</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mi data-mjx-texclass="OP" mathvariant="normal">&#x211C;</mi><mo>&#x2061;</mo><mi>s</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>&#x03C9;</mi><mi>&#x03C4;</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • Γ
  • q¯
  • τ
  • ω
  • e
  • i
  • ω
  • τ
  • q
  • ω
  • c
  • C
  • d
  • ω
  • e
  • i
  • ω
  • τ
  • q
  • ω
  • c
  • π
  • i
  • P
  • o
  • l
  • e
  • s
  • e
  • i
  • ω
  • τ
  • q
  • ω
  • c

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results