Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1199.466 on revision:1199
* Page found: Elektrodynamik Schöll (eq math.1199.466)
(force rerendering)Occurrences on the following pages:
Hash: 7f0f546bc009461a1fa629dbcb1fb707
TeX (original user input):
\begin{align}
& {{\nabla }_{r}}\times \bar{E}+\dot{\bar{B}}=0\left. {} \right|\cdot \bar{H} \\
& \nabla \times \bar{H}-\dot{\bar{D}}=\bar{j}\left. {} \right|\cdot \bar{E} \\
& \Rightarrow \bar{H}\cdot \left( \nabla \times \bar{E} \right)-\bar{E}\cdot \left( \nabla \times \bar{H} \right)+\bar{H}\cdot \frac{\partial }{\partial t}\bar{B}+\bar{E}\cdot \frac{\partial }{\partial t}\bar{D}=-\bar{j}\cdot \bar{E} \\
& \bar{H}\cdot \left( \nabla \times \bar{E} \right)-\bar{E}\cdot \left( \nabla \times \bar{H} \right)=\nabla \cdot \left( \bar{E}\times \bar{H} \right) \\
& \bar{H}\cdot \frac{\partial }{\partial t}\bar{B}=\frac{1}{{{\mu }_{0}}}\bar{B}\frac{\partial }{\partial t}\bar{B}=\frac{\partial }{\partial t}\left( \frac{1}{2{{\mu }_{0}}}{{{\bar{B}}}^{2}} \right) \\
& \bar{E}\cdot \frac{\partial }{\partial t}\bar{D}={{\varepsilon }_{0}}\bar{E}\cdot \frac{\partial }{\partial t}\bar{E}=\frac{\partial }{\partial t}\left( \frac{{{\varepsilon }_{0}}}{2}{{{\bar{E}}}^{2}} \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&{{\nabla }_{r}}\times {\bar {E}}+{\dot {\bar {B}}}=0\left.{}\right|\cdot {\bar {H}}\\&\nabla \times {\bar {H}}-{\dot {\bar {D}}}={\bar {j}}\left.{}\right|\cdot {\bar {E}}\\&\Rightarrow {\bar {H}}\cdot \left(\nabla \times {\bar {E}}\right)-{\bar {E}}\cdot \left(\nabla \times {\bar {H}}\right)+{\bar {H}}\cdot {\frac {\partial }{\partial t}}{\bar {B}}+{\bar {E}}\cdot {\frac {\partial }{\partial t}}{\bar {D}}=-{\bar {j}}\cdot {\bar {E}}\\&{\bar {H}}\cdot \left(\nabla \times {\bar {E}}\right)-{\bar {E}}\cdot \left(\nabla \times {\bar {H}}\right)=\nabla \cdot \left({\bar {E}}\times {\bar {H}}\right)\\&{\bar {H}}\cdot {\frac {\partial }{\partial t}}{\bar {B}}={\frac {1}{{\mu }_{0}}}{\bar {B}}{\frac {\partial }{\partial t}}{\bar {B}}={\frac {\partial }{\partial t}}\left({\frac {1}{2{{\mu }_{0}}}}{{\bar {B}}^{2}}\right)\\&{\bar {E}}\cdot {\frac {\partial }{\partial t}}{\bar {D}}={{\varepsilon }_{0}}{\bar {E}}\cdot {\frac {\partial }{\partial t}}{\bar {E}}={\frac {\partial }{\partial t}}\left({\frac {{\varepsilon }_{0}}{2}}{{\bar {E}}^{2}}\right)\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (8.643 KB / 668 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∇</mi><mo>⋅</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>D</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results