Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.238 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.238)

(force rerendering)

Occurrences on the following pages:

Hash: a76d8f87fa344feaddcaa8314e830f2e

TeX (original user input):

\begin{align}
& \Phi (\bar{r}\acute{\ }){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}=-{{\varepsilon }_{0}}\int_{\partial V}^{{}}{{}}d\bar{f}\cdot \Phi (\bar{r}){{\nabla }_{r}}G\left( \bar{r}-\bar{r}\acute{\ } \right){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }} \\
& =-{{\varepsilon }_{0}}\left[ \int_{\partial V}^{{}}{{}}d\bar{f}G\left( \bar{r}-\bar{r}\acute{\ } \right){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}\cdot {{\nabla }_{r}}\Phi (\bar{r})+\int_{V}^{{}}{{{d}^{3}}r\left( \Phi (\bar{r}){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}{{\Delta }_{r}}G\left( \bar{r}-\bar{r}\acute{\ } \right)-G\left( \bar{r}-\bar{r}\acute{\ } \right){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}{{\Delta }_{r}}\Phi (\bar{r}) \right)} \right] \\
& G\left( \bar{r}-\bar{r}\acute{\ } \right){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}=0 \\
& \Rightarrow \Phi (\bar{r}\acute{\ }){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}=-{{\varepsilon }_{0}}\int_{V}^{{}}{{{d}^{3}}r\left( \Phi (\bar{r}){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}{{\Delta }_{r}}G\left( \bar{r}-\bar{r}\acute{\ } \right) \right)=}\int_{V}^{{}}{{{d}^{3}}r\left( \Phi (\bar{r}){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}\left( -\frac{1}{{{\varepsilon }_{0}}}\delta \left( \bar{r}-\bar{r}\acute{\ } \right) \right) \right)} \\
& =\int_{V}^{{}}{{{d}^{3}}r\left( \Phi (\bar{r}){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}\delta \left( \bar{r}-\bar{r}\acute{\ } \right) \right)}=\Phi (\bar{r}\acute{\ }){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}={{\Phi }_{\beta }} \\
\end{align}

TeX (checked):

{\begin{aligned}&\Phi ({\bar {r}}{\acute {\ }}){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}=-{{\varepsilon }_{0}}\int _{\partial V}^{}{}d{\bar {f}}\cdot \Phi ({\bar {r}}){{\nabla }_{r}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}\\&=-{{\varepsilon }_{0}}\left[\int _{\partial V}^{}{}d{\bar {f}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}\cdot {{\nabla }_{r}}\Phi ({\bar {r}})+\int _{V}^{}{{{d}^{3}}r\left(\Phi ({\bar {r}}){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}{{\Delta }_{r}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)-G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}{{\Delta }_{r}}\Phi ({\bar {r}})\right)}\right]\\&G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}=0\\&\Rightarrow \Phi ({\bar {r}}{\acute {\ }}){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}=-{{\varepsilon }_{0}}\int _{V}^{}{{{d}^{3}}r\left(\Phi ({\bar {r}}){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}{{\Delta }_{r}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\right)=}\int _{V}^{}{{{d}^{3}}r\left(\Phi ({\bar {r}}){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}\left(-{\frac {1}{{\varepsilon }_{0}}}\delta \left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\right)\right)}\\&=\int _{V}^{}{{{d}^{3}}r\left(\Phi ({\bar {r}}){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}\delta \left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\right)}=\Phi ({\bar {r}}{\acute {\ }}){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}={{\Phi }_{\beta }}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (16.193 KB / 849 B) :

Φ(r¯´)|r¯´Sβ=ε0Vdf¯Φ(r¯)rG(r¯r¯´)|r¯´Sβ=ε0[Vdf¯G(r¯r¯´)|r¯´SβrΦ(r¯)+Vd3r(Φ(r¯)|r¯´SβΔrG(r¯r¯´)G(r¯r¯´)|r¯´SβΔrΦ(r¯))]G(r¯r¯´)|r¯´Sβ=0Φ(r¯´)|r¯´Sβ=ε0Vd3r(Φ(r¯)|r¯´SβΔrG(r¯r¯´))=Vd3r(Φ(r¯)|r¯´Sβ(1ε0δ(r¯r¯´)))=Vd3r(Φ(r¯)|r¯´Sβδ(r¯r¯´))=Φ(r¯´)|r¯´Sβ=Φβ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>+</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><msub><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><msub><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><msub><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mo>=</mo><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>S</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mo>=</mo><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • Φ
  • r¯
  • ´
  • r¯
  • ´
  • S
  • β
  • ε0
  • V
  • f¯
  • Φ
  • r¯
  • r
  • G
  • r¯
  • r¯
  • ´
  • r¯
  • ´
  • S
  • β
  • ε0
  • V
  • f¯
  • G
  • r¯
  • r¯
  • ´
  • r¯
  • ´
  • S
  • β
  • r
  • Φ
  • r¯
  • V
  • r
  • Φ
  • r¯
  • r¯
  • ´
  • S
  • β
  • Δr
  • G
  • r¯
  • r¯
  • ´
  • G
  • r¯
  • r¯
  • ´
  • r¯
  • ´
  • S
  • β
  • Δr
  • Φ
  • r¯
  • G
  • r¯
  • r¯
  • ´
  • r¯
  • ´
  • S
  • β
  • Φ
  • r¯
  • ´
  • r¯
  • ´
  • S
  • β
  • ε0
  • V
  • r
  • Φ
  • r¯
  • r¯
  • ´
  • S
  • β
  • Δr
  • G
  • r¯
  • r¯
  • ´
  • V
  • r
  • Φ
  • r¯
  • r¯
  • ´
  • S
  • β
  • ε0
  • δ
  • r¯
  • r¯
  • ´
  • V
  • r
  • Φ
  • r¯
  • r¯
  • ´
  • S
  • β
  • δ
  • r¯
  • r¯
  • ´
  • Φ
  • r¯
  • ´
  • r¯
  • ´
  • S
  • β
  • Φβ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results