Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.230 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.230)

(force rerendering)

Occurrences on the following pages:

Hash: e37e5d1d33f8da7ad1c9b31ea6ddcaae

TeX (original user input):

\Phi (\bar{r}\acute{\ })=\int_{V}^{{}}{{{d}^{3}}r}G\left( \bar{r}-\bar{r}\acute{\ } \right)\rho \left( {\bar{r}} \right)+{{\varepsilon }_{0}}\sum\limits_{\alpha =1}^{n}{{{\Phi }_{\alpha }}\oint\limits_{S\alpha }{{}}d\bar{f}\cdot {{\nabla }_{r}}G\left( \bar{r}-\bar{r}\acute{\ } \right)}

TeX (checked):

\Phi ({\bar {r}}{\acute {\ }})=\int _{V}^{}{{{d}^{3}}r}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\rho \left({\bar {r}}\right)+{{\varepsilon }_{0}}\sum \limits _{\alpha =1}^{n}{{{\Phi }_{\alpha }}\oint \limits _{S\alpha }{}d{\bar {f}}\cdot {{\nabla }_{r}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.895 KB / 515 B) :

Φ(r¯´)=Vd3rG(r¯r¯´)ρ(r¯)+ε0α=1nΦαSαdf¯rG(r¯r¯´)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi></mrow><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>&#x03B1;</mi></mrow></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • Φ
  • r¯
  • ´
  • V
  • r
  • G
  • r¯
  • r¯
  • ´
  • ρ
  • r¯
  • ε0
  • α
  • n
  • Φα
  • S
  • α
  • d
  • f¯
  • r
  • G
  • r¯
  • r¯
  • ´

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results