Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.154 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.154)

(force rerendering)

Occurrences on the following pages:

Hash: 3a4dead7e2a5d29cbc382346f17e9aa8

TeX (original user input):

\begin{align}
& {{Q}_{2}}=\frac{1}{2}\int_{-\infty }^{\infty }{{}}{{d}^{3}}r\acute{\ }\rho (\bar{r}\acute{\ })r{{\acute{\ }}^{2}}\left( 3{{\cos }^{2}}\vartheta -1 \right)=\frac{1}{2}\int_{-\infty }^{\infty }{{}}{{d}^{3}}r\acute{\ }\rho (\bar{r}\acute{\ })\left( 3\frac{\bar{r}\acute{\ }\cdot \bar{r}}{r}\frac{\bar{r}\acute{\ }\cdot \bar{r}}{r}-\bar{r}{{\acute{\ }}^{2}} \right) \\
& \frac{\bar{r}\acute{\ }\cdot \bar{r}}{r}\frac{\bar{r}\acute{\ }\cdot \bar{r}}{r}=\frac{{{x}_{k}}\acute{\ }{{x}_{k}}{{x}_{l}}\acute{\ }{{x}_{l}}}{{{r}^{2}}} \\
& \Rightarrow {{Q}_{2}}=\frac{1}{2{{r}^{2}}}\int_{-\infty }^{\infty }{{}}{{d}^{3}}r\acute{\ }\rho (\bar{r}\acute{\ })\left( 3{{x}_{k}}\acute{\ }{{x}_{l}}\acute{\ }-\bar{r}{{\acute{\ }}^{2}}{{\delta }_{kl}} \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&{{Q}_{2}}={\frac {1}{2}}\int _{-\infty }^{\infty }{}{{d}^{3}}r{\acute {\ }}\rho ({\bar {r}}{\acute {\ }})r{{\acute {\ }}^{2}}\left(3{{\cos }^{2}}\vartheta -1\right)={\frac {1}{2}}\int _{-\infty }^{\infty }{}{{d}^{3}}r{\acute {\ }}\rho ({\bar {r}}{\acute {\ }})\left(3{\frac {{\bar {r}}{\acute {\ }}\cdot {\bar {r}}}{r}}{\frac {{\bar {r}}{\acute {\ }}\cdot {\bar {r}}}{r}}-{\bar {r}}{{\acute {\ }}^{2}}\right)\\&{\frac {{\bar {r}}{\acute {\ }}\cdot {\bar {r}}}{r}}{\frac {{\bar {r}}{\acute {\ }}\cdot {\bar {r}}}{r}}={\frac {{{x}_{k}}{\acute {\ }}{{x}_{k}}{{x}_{l}}{\acute {\ }}{{x}_{l}}}{{r}^{2}}}\\&\Rightarrow {{Q}_{2}}={\frac {1}{2{{r}^{2}}}}\int _{-\infty }^{\infty }{}{{d}^{3}}r{\acute {\ }}\rho ({\bar {r}}{\acute {\ }})\left(3{{x}_{k}}{\acute {\ }}{{x}_{l}}{\acute {\ }}-{\bar {r}}{{\acute {\ }}^{2}}{{\delta }_{kl}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (8.699 KB / 697 B) :

Q2=12d3r´ρ(r¯´)r´2(3cos2ϑ1)=12d3r´ρ(r¯´)(3r¯´r¯rr¯´r¯rr¯´2)r¯´r¯rr¯´r¯r=xk´xkxl´xlr2Q2=12r2d3r´ρ(r¯´)(3xk´xl´r¯´2δkl)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>3</mn><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>3</mn><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>3</mn><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>l</mi></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • Q2
  • r
  • ´
  • ρ
  • r¯
  • ´
  • r
  • ´
  • ϑ
  • r
  • ´
  • ρ
  • r¯
  • ´
  • r¯
  • ´
  • r¯
  • r
  • r¯
  • ´
  • r¯
  • r
  • r¯
  • ´
  • r¯
  • ´
  • r¯
  • r
  • r¯
  • ´
  • r¯
  • r
  • xk
  • ´
  • xk
  • xl
  • ´
  • xl
  • r
  • Q2
  • r
  • r
  • ´
  • ρ
  • r¯
  • ´
  • xk
  • ´
  • xl
  • ´
  • r¯
  • ´
  • δkl

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results