Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.149 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.149)

(force rerendering)

Occurrences on the following pages:

Hash: 938af017fc2bceec3d132afe41c3dc2b

TeX (original user input):

\begin{align}
& \rho (\bar{r}\acute{\ })=q\left[ \delta \left( \bar{r}\acute{\ }-{{{\bar{r}}}_{1}} \right)-\delta \left( \bar{r}\acute{\ }-{{{\bar{r}}}_{2}} \right) \right] \\
& {{Q}_{0}}=0 \\
& \bar{p}=q\left( {{{\bar{r}}}_{1}}-{{{\bar{r}}}_{2}} \right)=q\cdot \bar{a} \\
\end{align}

TeX (checked):

{\begin{aligned}&\rho ({\bar {r}}{\acute {\ }})=q\left[\delta \left({\bar {r}}{\acute {\ }}-{{\bar {r}}_{1}}\right)-\delta \left({\bar {r}}{\acute {\ }}-{{\bar {r}}_{2}}\right)\right]\\&{{Q}_{0}}=0\\&{\bar {p}}=q\left({{\bar {r}}_{1}}-{{\bar {r}}_{2}}\right)=q\cdot {\bar {a}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.919 KB / 473 B) :

ρ(r¯´)=q[δ(r¯´r¯1)δ(r¯´r¯2)]Q0=0p¯=q(r¯1r¯2)=qa¯
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>q</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>a</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • ρ
  • r¯
  • ´
  • q
  • δ
  • r¯
  • ´
  • r¯1
  • δ
  • r¯
  • ´
  • r¯2
  • Q0
  • p¯
  • q
  • r¯1
  • r¯2
  • q
  • a¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results