Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1274 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1274)

(force rerendering)

Occurrences on the following pages:

Hash: 24f3cce7dfed86d0d06e4593167b4f5a

TeX (original user input):

\begin{align}
& \delta W=\int_{1}^{2}{{}}\left\{ {{m}_{0}}c\frac{d{{u}^{\mu }}}{ds}-\left( {{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }} \right){{u}_{\nu }} \right\}\delta {{x}_{\mu }}=0 \\
& {{m}_{0}}c\frac{d{{u}^{\mu }}}{ds}=\left( {{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }} \right){{u}_{\nu }}:={{f}^{\mu \nu }}{{u}_{\nu }} \\
& {{f}^{\mu \nu }}=\left( {{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }} \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&\delta W=\int _{1}^{2}{}\left\{{{m}_{0}}c{\frac {d{{u}^{\mu }}}{ds}}-\left({{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }}\right){{u}_{\nu }}\right\}\delta {{x}_{\mu }}=0\\&{{m}_{0}}c{\frac {d{{u}^{\mu }}}{ds}}=\left({{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }}\right){{u}_{\nu }}:={{f}^{\mu \nu }}{{u}_{\nu }}\\&{{f}^{\mu \nu }}=\left({{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.613 KB / 518 B) :

δW=12{m0cduμds(μϕννϕμ)uν}δxμ=0m0cduμds=(μϕννϕμ)uν:=fμνuνfμν=(μϕννϕμ)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03B4;</mi><mi>W</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>s</mi></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>s</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mi>:</mi><mo>=</mo><msup><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • δ
  • W
  • m0
  • c
  • u
  • μ
  • d
  • s
  • μ
  • ϕ
  • ν
  • ν
  • ϕ
  • μ
  • uν
  • δ
  • xμ
  • m0
  • c
  • d
  • u
  • μ
  • d
  • s
  • μ
  • ϕ
  • ν
  • ν
  • ϕ
  • μ
  • uν
  • f
  • μ
  • ν
  • uν
  • f
  • μ
  • ν
  • μ
  • ϕ
  • ν
  • ν
  • ϕ
  • μ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results