Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1269 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1269)

(force rerendering)

Occurrences on the following pages:

Hash: 688c40ea0917776e4ee28abe98d455cb

TeX (original user input):

\begin{align}
& \int_{1}^{2}{{}}-{{m}_{0}}c{{u}^{\mu }}d\left( \delta {{x}_{\mu }} \right)=\left[ -{{m}_{0}}c{{u}^{\mu }}\left( \delta {{x}_{\mu }} \right) \right]_{1}^{2}+\int_{1}^{2}{{}}{{m}_{0}}cd{{u}^{\mu }}\left( \delta {{x}_{\mu }} \right) \\
& \left[ -{{m}_{0}}c{{u}^{\mu }}\left( \delta {{x}_{\mu }} \right) \right]_{1}^{2}=0,weil\delta {{x}_{\mu }}_{1}^{2}=0 \\
& \Rightarrow \int_{1}^{2}{{}}-{{m}_{0}}c{{u}^{\mu }}d\left( \delta {{x}_{\mu }} \right)=\int_{1}^{2}{{}}{{m}_{0}}cd{{u}^{\mu }}\left( \delta {{x}_{\mu }} \right)=\int_{1}^{2}{{}}{{m}_{0}}c\frac{d{{u}^{\mu }}}{ds}\left( \delta {{x}_{\mu }} \right)ds \\
\end{align}

TeX (checked):

{\begin{aligned}&\int _{1}^{2}{}-{{m}_{0}}c{{u}^{\mu }}d\left(\delta {{x}_{\mu }}\right)=\left[-{{m}_{0}}c{{u}^{\mu }}\left(\delta {{x}_{\mu }}\right)\right]_{1}^{2}+\int _{1}^{2}{}{{m}_{0}}cd{{u}^{\mu }}\left(\delta {{x}_{\mu }}\right)\\&\left[-{{m}_{0}}c{{u}^{\mu }}\left(\delta {{x}_{\mu }}\right)\right]_{1}^{2}=0,weil\delta {{x}_{\mu }}_{1}^{2}=0\\&\Rightarrow \int _{1}^{2}{}-{{m}_{0}}c{{u}^{\mu }}d\left(\delta {{x}_{\mu }}\right)=\int _{1}^{2}{}{{m}_{0}}cd{{u}^{\mu }}\left(\delta {{x}_{\mu }}\right)=\int _{1}^{2}{}{{m}_{0}}c{\frac {d{{u}^{\mu }}}{ds}}\left(\delta {{x}_{\mu }}\right)ds\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.101 KB / 527 B) :

12m0cuμd(δxμ)=[m0cuμ(δxμ)]12+12m0cduμ(δxμ)[m0cuμ(δxμ)]12=0,weilδxμ12=012m0cuμd(δxμ)=12m0cduμ(δxμ)=12m0cduμds(δxμ)ds
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><mo>&#x2212;</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mi>d</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mo>&#x2212;</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msubsup><mo>+</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><mi>d</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mo>&#x2212;</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msubsup><mo>=</mo><mn>0</mn><mo>,</mo><mi>w</mi><mi>e</mi><mi>i</mi><mi>l</mi><mi>&#x03B4;</mi><msubsup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msubsup><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><mo>&#x2212;</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mi>d</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><mi>d</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>s</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><mi>s</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • m0
  • c
  • u
  • μ
  • δ
  • xμ
  • m0
  • c
  • u
  • μ
  • δ
  • xμ
  • m0
  • c
  • u
  • μ
  • δ
  • xμ
  • m0
  • c
  • u
  • μ
  • δ
  • xμ
  • w
  • e
  • i
  • l
  • δ
  • xμ
  • m0
  • c
  • u
  • μ
  • δ
  • xμ
  • m0
  • c
  • u
  • μ
  • δ
  • xμ
  • m0
  • c
  • u
  • μ
  • d
  • s
  • δ
  • xμ
  • d
  • s

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results