Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1248 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1248)

(force rerendering)

Occurrences on the following pages:

Hash: 6b9e264783adafac5f570b5a5a1ea10a

TeX (original user input):

\begin{align}
& {{\partial }_{2}}{{B}^{3}}-{{\partial }_{3}}{{B}^{2}}={{\mu }_{0}}{{j}^{1}}+{{\varepsilon }_{0}}{{\mu }_{0}}\frac{\partial }{\partial t}{{E}^{1}} \\
& {{\mu }_{0}}c=\frac{1}{{{\varepsilon }_{0}}c} \\
& \Leftrightarrow {{\partial }_{2}}{{F}^{21}}-.{{\partial }_{3}}{{F}^{13}}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{1}}+.{{\partial }_{0}}{{F}^{10}} \\
& {{\partial }_{2}}{{F}^{21}}+{{\partial }_{3}}{{F}^{31}}+{{\partial }_{0}}{{F}^{01}}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{1}} \\
& \Leftrightarrow {{\partial }_{\nu }}{{F}^{\nu 1}}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{1}} \\
& wegen{{\partial }_{1}}{{F}^{11}}=0 \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\partial }_{2}}{{B}^{3}}-{{\partial }_{3}}{{B}^{2}}={{\mu }_{0}}{{j}^{1}}+{{\varepsilon }_{0}}{{\mu }_{0}}{\frac {\partial }{\partial t}}{{E}^{1}}\\&{{\mu }_{0}}c={\frac {1}{{{\varepsilon }_{0}}c}}\\&\Leftrightarrow {{\partial }_{2}}{{F}^{21}}-.{{\partial }_{3}}{{F}^{13}}={\frac {1}{{{\varepsilon }_{0}}c}}{{j}^{1}}+.{{\partial }_{0}}{{F}^{10}}\\&{{\partial }_{2}}{{F}^{21}}+{{\partial }_{3}}{{F}^{31}}+{{\partial }_{0}}{{F}^{01}}={\frac {1}{{{\varepsilon }_{0}}c}}{{j}^{1}}\\&\Leftrightarrow {{\partial }_{\nu }}{{F}^{\nu 1}}={\frac {1}{{{\varepsilon }_{0}}c}}{{j}^{1}}\\&wegen{{\partial }_{1}}{{F}^{11}}=0\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.536 KB / 502 B) :

2B33B2=μ0j1+ε0μ0tE1μ0c=1ε0c2F21.3F13=1ε0cj1+.0F102F21+3F31+0F01=1ε0cj1νFν1=1ε0cj1wegen1F11=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo>&#x2212;</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>+</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D4;</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>1</mn></mrow></mrow></msup><mo>&#x2212;</mo><mo>.</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>3</mn></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow></mfrac></mrow><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>+</mo><mo>.</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>0</mn></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>1</mn></mrow></mrow></msup><mo>+</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mn>1</mn></mrow></mrow></msup><mo>+</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mn>1</mn></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow></mfrac></mrow><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D4;</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi><mn>1</mn></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow></mfrac></mrow><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>w</mi><mi>e</mi><mi>g</mi><mi>e</mi><mi>n</mi><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>1</mn></mrow></mrow></msup><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • B
  • B
  • μ0
  • j
  • ε0
  • μ0
  • t
  • E
  • μ0
  • c
  • ε0
  • c
  • F
  • F
  • ε0
  • c
  • j
  • F
  • F
  • F
  • F
  • ε0
  • c
  • j
  • ν
  • F
  • ν
  • ε0
  • c
  • j
  • w
  • e
  • g
  • e
  • n
  • F

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results