Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1199.1241 on revision:1199
* Page found: Elektrodynamik Schöll (eq math.1199.1241)
(force rerendering)Occurrences on the following pages:
Hash: a293efff8d86199659669f099a081c4a
TeX (original user input):
\begin{align}
& {{\varepsilon }^{\kappa \lambda \mu \nu }}\acute{\ }={{U}^{\kappa }}_{\alpha }{{U}^{\lambda }}_{\beta }{{U}^{\mu }}_{\gamma }{{U}^{\nu }}_{\delta }{{\varepsilon }^{\alpha \beta \gamma \delta }} \\
& =\left| \begin{matrix}
{{U}^{\kappa }}_{0} & {{U}^{\kappa }}_{1} & {{U}^{\kappa }}_{2} & {{U}^{\kappa }}_{3} \\
{{U}^{\lambda }}_{0} & {{U}^{\lambda }}_{1} & {{U}^{\lambda }}_{2} & {{U}^{\lambda }}_{3} \\
{{U}^{\mu }}_{0} & {{U}^{\mu }}_{1} & {{U}^{\mu }}_{2} & {{U}^{\mu }}_{3} \\
{{U}^{\nu }}_{0} & {{U}^{\nu }}_{1} & {{U}^{\nu }}_{2} & {{U}^{\nu }}_{3} \\
\end{matrix} \right|=\left( \det U \right)\cdot {{\varepsilon }^{\kappa \lambda \mu \nu }} \\
& \left( \det U \right)=\pm 1 \\
\end{align}
TeX (checked):
{\begin{aligned}&{{\varepsilon }^{\kappa \lambda \mu \nu }}{\acute {\ }}={{U}^{\kappa }}_{\alpha }{{U}^{\lambda }}_{\beta }{{U}^{\mu }}_{\gamma }{{U}^{\nu }}_{\delta }{{\varepsilon }^{\alpha \beta \gamma \delta }}\\&=\left|{\begin{matrix}{{U}^{\kappa }}_{0}&{{U}^{\kappa }}_{1}&{{U}^{\kappa }}_{2}&{{U}^{\kappa }}_{3}\\{{U}^{\lambda }}_{0}&{{U}^{\lambda }}_{1}&{{U}^{\lambda }}_{2}&{{U}^{\lambda }}_{3}\\{{U}^{\mu }}_{0}&{{U}^{\mu }}_{1}&{{U}^{\mu }}_{2}&{{U}^{\mu }}_{3}\\{{U}^{\nu }}_{0}&{{U}^{\nu }}_{1}&{{U}^{\nu }}_{2}&{{U}^{\nu }}_{3}\\\end{matrix}}\right|=\left(\det U\right)\cdot {{\varepsilon }^{\kappa \lambda \mu \nu }}\\&\left(\det U\right)=\pm 1\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.672 KB / 586 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>ε</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>κ</mi><mi>λ</mi><mi>μ</mi><mi>ν</mi></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>λ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>μ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>γ</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>δ</mi></mrow></msub><msup><mi>ε</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>α</mi><mi>β</mi><mi>γ</mi><mi>δ</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>λ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>λ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>λ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>λ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>μ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>μ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>μ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>μ</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>det</mi><mo>⁡</mo><mi>U</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>⋅</mo><msup><mi>ε</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>κ</mi><mi>λ</mi><mi>μ</mi><mi>ν</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>det</mi><mo>⁡</mo><mi>U</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>±</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results