Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1241 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1241)

(force rerendering)

Occurrences on the following pages:

Hash: a293efff8d86199659669f099a081c4a

TeX (original user input):

\begin{align}
& {{\varepsilon }^{\kappa \lambda \mu \nu }}\acute{\ }={{U}^{\kappa }}_{\alpha }{{U}^{\lambda }}_{\beta }{{U}^{\mu }}_{\gamma }{{U}^{\nu }}_{\delta }{{\varepsilon }^{\alpha \beta \gamma \delta }} \\
& =\left| \begin{matrix}
{{U}^{\kappa }}_{0} & {{U}^{\kappa }}_{1} & {{U}^{\kappa }}_{2} & {{U}^{\kappa }}_{3}  \\
{{U}^{\lambda }}_{0} & {{U}^{\lambda }}_{1} & {{U}^{\lambda }}_{2} & {{U}^{\lambda }}_{3}  \\
{{U}^{\mu }}_{0} & {{U}^{\mu }}_{1} & {{U}^{\mu }}_{2} & {{U}^{\mu }}_{3}  \\
{{U}^{\nu }}_{0} & {{U}^{\nu }}_{1} & {{U}^{\nu }}_{2} & {{U}^{\nu }}_{3}  \\
\end{matrix} \right|=\left( \det U \right)\cdot {{\varepsilon }^{\kappa \lambda \mu \nu }} \\
& \left( \det U \right)=\pm 1 \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\varepsilon }^{\kappa \lambda \mu \nu }}{\acute {\ }}={{U}^{\kappa }}_{\alpha }{{U}^{\lambda }}_{\beta }{{U}^{\mu }}_{\gamma }{{U}^{\nu }}_{\delta }{{\varepsilon }^{\alpha \beta \gamma \delta }}\\&=\left|{\begin{matrix}{{U}^{\kappa }}_{0}&{{U}^{\kappa }}_{1}&{{U}^{\kappa }}_{2}&{{U}^{\kappa }}_{3}\\{{U}^{\lambda }}_{0}&{{U}^{\lambda }}_{1}&{{U}^{\lambda }}_{2}&{{U}^{\lambda }}_{3}\\{{U}^{\mu }}_{0}&{{U}^{\mu }}_{1}&{{U}^{\mu }}_{2}&{{U}^{\mu }}_{3}\\{{U}^{\nu }}_{0}&{{U}^{\nu }}_{1}&{{U}^{\nu }}_{2}&{{U}^{\nu }}_{3}\\\end{matrix}}\right|=\left(\det U\right)\cdot {{\varepsilon }^{\kappa \lambda \mu \nu }}\\&\left(\det U\right)=\pm 1\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.672 KB / 586 B) :

εκλμν´=UκαUλβUμγUνδεαβγδ=|Uκ0Uκ1Uκ2Uκ3Uλ0Uλ1Uλ2Uλ3Uμ0Uμ1Uμ2Uμ3Uν0Uν1Uν2Uν3|=(detU)εκλμν(detU)=±1
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi><mi>&#x03BB;</mi><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03B4;</mi></mrow></msub><msup><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi><mi>&#x03B3;</mi><mi>&#x03B4;</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>det</mi><mo>&#x2061;</mo><mi>U</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x22C5;</mo><msup><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi><mi>&#x03BB;</mi><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>det</mi><mo>&#x2061;</mo><mi>U</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x00B1;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • ε
  • κ
  • λ
  • μ
  • ν
  • ´
  • U
  • κ
  • α
  • U
  • λ
  • β
  • U
  • μ
  • γ
  • U
  • ν
  • δ
  • ε
  • α
  • β
  • γ
  • δ
  • U
  • κ
  • U
  • κ
  • U
  • κ
  • U
  • κ
  • U
  • λ
  • U
  • λ
  • U
  • λ
  • U
  • λ
  • U
  • μ
  • U
  • μ
  • U
  • μ
  • U
  • μ
  • U
  • ν
  • U
  • ν
  • U
  • ν
  • U
  • ν
  • U
  • ε
  • κ
  • λ
  • μ
  • ν
  • U

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results