Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1228 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1228)

(force rerendering)

Occurrences on the following pages:

Hash: 9479d079644d13562128ffb315aaf47c

TeX (original user input):

\begin{align}
& {{E}^{1}}\acute{\ }={{E}^{1}} \\
& {{E}^{2}}\acute{\ }=\frac{1}{\sqrt{1-{{\beta }^{2}}}}\left( {{E}^{2}}-v{{B}^{3}} \right) \\
& {{E}^{3}}\acute{\ }=\frac{1}{\sqrt{1-{{\beta }^{2}}}}\left( {{E}^{3}}+v{{B}^{2}} \right) \\
& {{B}^{1}}\acute{\ }={{B}^{1}} \\
& {{B}^{2}}\acute{\ }=\frac{1}{\sqrt{1-{{\beta }^{2}}}}\left( {{B}^{2}}+\frac{v}{{{c}^{2}}}{{E}^{3}} \right) \\
& {{B}^{3}}\acute{\ }=\frac{1}{\sqrt{1-{{\beta }^{2}}}}\left( {{B}^{3}}-\frac{v}{{{c}^{2}}}{{E}^{2}} \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&{{E}^{1}}{\acute {\ }}={{E}^{1}}\\&{{E}^{2}}{\acute {\ }}={\frac {1}{\sqrt {1-{{\beta }^{2}}}}}\left({{E}^{2}}-v{{B}^{3}}\right)\\&{{E}^{3}}{\acute {\ }}={\frac {1}{\sqrt {1-{{\beta }^{2}}}}}\left({{E}^{3}}+v{{B}^{2}}\right)\\&{{B}^{1}}{\acute {\ }}={{B}^{1}}\\&{{B}^{2}}{\acute {\ }}={\frac {1}{\sqrt {1-{{\beta }^{2}}}}}\left({{B}^{2}}+{\frac {v}{{c}^{2}}}{{E}^{3}}\right)\\&{{B}^{3}}{\acute {\ }}={\frac {1}{\sqrt {1-{{\beta }^{2}}}}}\left({{B}^{3}}-{\frac {v}{{c}^{2}}}{{E}^{2}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.84 KB / 504 B) :

E1´=E1E2´=11β2(E2vB3)E3´=11β2(E3+vB2)B1´=B1B2´=11β2(B2+vc2E3)B3´=11β2(B3vc2E2)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><mi>v</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo>+</mo><mi>v</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • E
  • ´
  • E
  • E
  • ´
  • β
  • E
  • v
  • B
  • E
  • ´
  • β
  • E
  • v
  • B
  • B
  • ´
  • B
  • B
  • ´
  • β
  • B
  • v
  • c
  • E
  • B
  • ´
  • β
  • B
  • v
  • c
  • E

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results