Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1199.1224 on revision:1199
* Page found: Elektrodynamik Schöll (eq math.1199.1224)
(force rerendering)Occurrences on the following pages:
Hash: 837ff81445011e80e01ad2beaa42199f
TeX (original user input):
\begin{align}
& E{{\acute{\ }}^{1}}=F{{\acute{\ }}^{10}}={{U}^{1}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}=-\beta \gamma {{U}^{0}}_{\kappa }{{F}^{0\kappa }}+\gamma {{U}^{0}}_{\kappa }{{F}^{1\kappa }}={{\left( \beta \gamma \right)}^{2}}{{F}^{01}}+{{\gamma }^{2}}{{F}^{10}}= \\
& ={{\gamma }^{2}}\left( 1-{{\beta }^{2}} \right){{F}^{10}}={{E}^{1}} \\
& {{\gamma }^{2}}\left( 1-{{\beta }^{2}} \right)=1 \\
& \\
& E{{\acute{\ }}^{2}}=F{{\acute{\ }}^{20}}={{U}^{2}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}={{U}^{0}}_{\kappa }{{F}^{2\kappa }}=\gamma {{F}^{20}}-\beta \gamma {{F}^{21}}=\gamma \left( {{E}^{2}}-v{{B}^{3}} \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&E{{\acute {\ }}^{1}}=F{{\acute {\ }}^{10}}={{U}^{1}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}=-\beta \gamma {{U}^{0}}_{\kappa }{{F}^{0\kappa }}+\gamma {{U}^{0}}_{\kappa }{{F}^{1\kappa }}={{\left(\beta \gamma \right)}^{2}}{{F}^{01}}+{{\gamma }^{2}}{{F}^{10}}=\\&={{\gamma }^{2}}\left(1-{{\beta }^{2}}\right){{F}^{10}}={{E}^{1}}\\&{{\gamma }^{2}}\left(1-{{\beta }^{2}}\right)=1\\&\\&E{{\acute {\ }}^{2}}=F{{\acute {\ }}^{20}}={{U}^{2}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}={{U}^{0}}_{\kappa }{{F}^{2\kappa }}=\gamma {{F}^{20}}-\beta \gamma {{F}^{21}}=\gamma \left({{E}^{2}}-v{{B}^{3}}\right)\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.148 KB / 593 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>E</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>=</mo><mi>F</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>0</mn></mrow></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>λ</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>λ</mi><mi>κ</mi></mrow></mrow></msup><mo>=</mo><mo>−</mo><mi>β</mi><mi>γ</mi><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mi>κ</mi></mrow></mrow></msup><mo>+</mo><mi>γ</mi><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mi>κ</mi></mrow></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>β</mi><mi>γ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mn>1</mn></mrow></mrow></msup><mo>+</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>0</mn></mrow></mrow></msup><mo>=</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>0</mn></mrow></mrow></msup><mo>=</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd><mi>E</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>F</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>0</mn></mrow></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>λ</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>λ</mi><mi>κ</mi></mrow></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>κ</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>κ</mi></mrow></mrow></msup><mo>=</mo><mi>γ</mi><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>0</mn></mrow></mrow></msup><mo>−</mo><mi>β</mi><mi>γ</mi><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>1</mn></mrow></mrow></msup><mo>=</mo><mi>γ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><mi>v</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results