Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1206 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1206)

(force rerendering)

Occurrences on the following pages:

Hash: af5b9e4c123711d7c44977b916e4b419

TeX (original user input):

\begin{align}
& {{\Phi }^{0}}\acute{\ }=\gamma \left( {{\Phi }^{0}}-\beta {{\Phi }^{1}} \right)\quad bzw.\quad \Phi \acute{\ }=\gamma \left( \Phi -v{{A}^{1}} \right) \\
& {{\Phi }^{1}}\acute{\ }=\gamma \left( {{\Phi }^{1}}-\beta {{\Phi }^{0}} \right)\quad bzw.\quad A{{\acute{\ }}^{1}}=\gamma \left( {{A}^{1}}-\frac{v}{{{c}^{2}}}\Phi  \right),{{A}^{\acute{\ }2}}={{A}^{2}},A{{\acute{\ }}^{3}}={{A}^{3}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\Phi }^{0}}{\acute {\ }}=\gamma \left({{\Phi }^{0}}-\beta {{\Phi }^{1}}\right)\quad bzw.\quad \Phi {\acute {\ }}=\gamma \left(\Phi -v{{A}^{1}}\right)\\&{{\Phi }^{1}}{\acute {\ }}=\gamma \left({{\Phi }^{1}}-\beta {{\Phi }^{0}}\right)\quad bzw.\quad A{{\acute {\ }}^{1}}=\gamma \left({{A}^{1}}-{\frac {v}{{c}^{2}}}\Phi \right),{{A}^{{\acute {\ }}2}}={{A}^{2}},A{{\acute {\ }}^{3}}={{A}^{3}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.646 KB / 539 B) :

Φ0´=γ(Φ0βΦ1)bzw.Φ´=γ(ΦvA1)Φ1´=γ(Φ1βΦ0)bzw.A´1=γ(A1vc2Φ),A´2=A2,A´3=A3
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo>&#x2212;</mo><mi>&#x03B2;</mi><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mi>b</mi><mi>z</mi><mi>w</mi><mo>.</mo><mspace width="1em"></mspace><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A6;</mi><mo>&#x2212;</mo><mi>v</mi><msup><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>&#x2212;</mo><mi>&#x03B2;</mi><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mi>b</mi><mi>z</mi><mi>w</mi><mo>.</mo><mspace width="1em"></mspace><mi>A</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>,</mo><msup><mi>A</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mn>2</mn></mrow></mrow></msup><mo>=</mo><msup><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>,</mo><mi>A</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo>=</mo><msup><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • Φ
  • ´
  • γ
  • Φ
  • β
  • Φ
  • b
  • z
  • w
  • Φ
  • ´
  • γ
  • Φ
  • v
  • A
  • Φ
  • ´
  • γ
  • Φ
  • β
  • Φ
  • b
  • z
  • w
  • A
  • ´
  • γ
  • A
  • v
  • c
  • Φ
  • A
  • ´
  • A
  • A
  • ´
  • A

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results