Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1197 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1197)

(force rerendering)

Occurrences on the following pages:

Hash: 8996aa031ee02454819d03f8b138e3c6

TeX (original user input):

\begin{align}
& {{j}^{0}}\acute{\ }=\gamma \left( {{j}^{0}}-\beta {{j}^{1}} \right)\Leftrightarrow \rho \acute{\ }=\gamma \left( \rho -\frac{v}{{{c}^{2}}}{{j}^{1}} \right) \\
& {{j}^{1}}\acute{\ }=\gamma \left( {{j}^{1}}-\beta {{j}^{0}} \right)\Leftrightarrow {{j}^{1}}\acute{\ }=\gamma \left( {{j}^{1}}-v\rho  \right) \\
& {{j}^{2}}\acute{\ }={{j}^{2}} \\
& {{j}^{3}}\acute{\ }={{j}^{3}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{j}^{0}}{\acute {\ }}=\gamma \left({{j}^{0}}-\beta {{j}^{1}}\right)\Leftrightarrow \rho {\acute {\ }}=\gamma \left(\rho -{\frac {v}{{c}^{2}}}{{j}^{1}}\right)\\&{{j}^{1}}{\acute {\ }}=\gamma \left({{j}^{1}}-\beta {{j}^{0}}\right)\Leftrightarrow {{j}^{1}}{\acute {\ }}=\gamma \left({{j}^{1}}-v\rho \right)\\&{{j}^{2}}{\acute {\ }}={{j}^{2}}\\&{{j}^{3}}{\acute {\ }}={{j}^{3}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.271 KB / 473 B) :

j0´=γ(j0βj1)ρ´=γ(ρvc2j1)j1´=γ(j1βj0)j1´=γ(j1vρ)j2´=j2j3´=j3
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo>&#x2212;</mo><mi>&#x03B2;</mi><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D4;</mo><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C1;</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>&#x2212;</mo><mi>&#x03B2;</mi><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D4;</mo><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>&#x2212;</mo><mi>v</mi><mi>&#x03C1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • j
  • ´
  • γ
  • j
  • β
  • j
  • ρ
  • ´
  • γ
  • ρ
  • v
  • c
  • j
  • j
  • ´
  • γ
  • j
  • β
  • j
  • j
  • ´
  • γ
  • j
  • v
  • ρ
  • j
  • ´
  • j
  • j
  • ´
  • j

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results