Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1199.1174 on revision:1199
* Page found: Elektrodynamik Schöll (eq math.1199.1174)
(force rerendering)Occurrences on the following pages:
Hash: 3dfe06be669a37e46e6318a4efb588bd
TeX (original user input):
\begin{align}
& {{u}^{i}}:=\frac{d{{x}^{i}}}{ds}\Rightarrow {{u}^{i}}{{u}_{i}}=\frac{d{{x}^{i}}d{{x}_{i}}}{{{\left( ds \right)}^{2}}}=1 \\
& mit \\
& ds={{\left( d{{x}^{i}}d{{x}_{i}} \right)}^{\frac{1}{2}}}=c{{\left( 1-{{\beta }^{2}} \right)}^{\frac{1}{2}dt}}=\frac{c}{\gamma }dt \\
& \Rightarrow {{u}^{0}}=\gamma \\
& {{u}^{\alpha }}=\frac{\gamma }{c}{{v}^{\alpha }} \\
& {{v}^{\alpha }}:=\frac{d{{x}^{\alpha }}}{dt} \\
& \beta :=\frac{v}{c} \\
& \gamma :=\frac{1}{\sqrt{1-{{\beta }^{2}}}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{{u}^{i}}:={\frac {d{{x}^{i}}}{ds}}\Rightarrow {{u}^{i}}{{u}_{i}}={\frac {d{{x}^{i}}d{{x}_{i}}}{{\left(ds\right)}^{2}}}=1\\&mit\\&ds={{\left(d{{x}^{i}}d{{x}_{i}}\right)}^{\frac {1}{2}}}=c{{\left(1-{{\beta }^{2}}\right)}^{{\frac {1}{2}}dt}}={\frac {c}{\gamma }}dt\\&\Rightarrow {{u}^{0}}=\gamma \\&{{u}^{\alpha }}={\frac {\gamma }{c}}{{v}^{\alpha }}\\&{{v}^{\alpha }}:={\frac {d{{x}^{\alpha }}}{dt}}\\&\beta :={\frac {v}{c}}\\&\gamma :={\frac {1}{\sqrt {1-{{\beta }^{2}}}}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.256 KB / 573 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>s</mi></mrow></mrow></mfrac></mrow><mo>⇒</mo><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mi>d</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>s</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>m</mi><mi>i</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>d</mi><mi>s</mi><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mi>d</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mo>=</mo><mi>c</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>d</mi><mi>t</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow><mrow data-mjx-texclass="ORD"><mi>γ</mi></mrow></mfrac></mrow><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo>=</mo><mi>γ</mi></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>γ</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msup><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>β</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>γ</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>−</mo><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results