Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1120 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1120)

(force rerendering)

Occurrences on the following pages:

Hash: 912c7331fd3afaa518e5dccaacbcda99

TeX (original user input):

\begin{align}
& \operatorname{Re}\hat{\chi }\left( \omega  \right)=\varepsilon \acute{\ }\left( \omega  \right)-1=\frac{1}{\pi }P\int_{-\infty }^{\infty }{{}}d\omega \acute{\ }\frac{1}{\omega \acute{\ }-\omega }\varepsilon \acute{\ }\acute{\ }\left( \omega \acute{\ } \right) \\
& \operatorname{Im}\hat{\chi }\left( \omega  \right)=\varepsilon \acute{\ }\acute{\ }\left( \omega  \right)=-\frac{1}{\pi }P\int_{-\infty }^{\infty }{{}}d\omega \acute{\ }\frac{1}{\omega \acute{\ }-\omega }\left( \varepsilon \acute{\ }\left( \omega \acute{\ } \right)-1 \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&\operatorname {Re} {\hat {\chi }}\left(\omega \right)=\varepsilon {\acute {\ }}\left(\omega \right)-1={\frac {1}{\pi }}P\int _{-\infty }^{\infty }{}d\omega {\acute {\ }}{\frac {1}{\omega {\acute {\ }}-\omega }}\varepsilon {\acute {\ }}{\acute {\ }}\left(\omega {\acute {\ }}\right)\\&\operatorname {Im} {\hat {\chi }}\left(\omega \right)=\varepsilon {\acute {\ }}{\acute {\ }}\left(\omega \right)=-{\frac {1}{\pi }}P\int _{-\infty }^{\infty }{}d\omega {\acute {\ }}{\frac {1}{\omega {\acute {\ }}-\omega }}\left(\varepsilon {\acute {\ }}\left(\omega {\acute {\ }}\right)-1\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.085 KB / 553 B) :

χ^(ω)=ε´(ω)1=1πPdω´1ω´ωε´´(ω´)χ^(ω)=ε´´(ω)=1πPdω´1ω´ω(ε´(ω´)1)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi data-mjx-texclass="OP" mathvariant="normal">&#x211C;</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C7;</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mn>1</mn><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow></mfrac></mrow><mi>P</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>&#x03C9;</mi></mrow></mrow></mfrac></mrow><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi data-mjx-texclass="OP" mathvariant="normal">&#x2111;</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C7;</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow></mfrac></mrow><mi>P</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>&#x03C9;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • χ^
  • ω
  • ε
  • ´
  • ω
  • π
  • P
  • ω
  • ´
  • ω
  • ´
  • ω
  • ε
  • ´
  • ´
  • ω
  • ´
  • χ^
  • ω
  • ε
  • ´
  • ´
  • ω
  • π
  • P
  • ω
  • ´
  • ω
  • ´
  • ω
  • ε
  • ´
  • ω
  • ´

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results