Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1114 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1114)

(force rerendering)

Occurrences on the following pages:

Hash: e9b1398cf351f33b86a97d1b125576cd

TeX (original user input):

\begin{matrix}
\lim   \\
\varepsilon ->{{0}^{+}}  \\
\end{matrix}\left[ \int_{-\infty }^{\omega -\varepsilon }{+\int_{\omega +\varepsilon }^{\infty }{{}}} \right]d\omega \acute{\ }\frac{1}{\omega \acute{\ }-\omega }\hat{\chi }\left( \omega \acute{\ } \right)=P\int_{-\infty }^{\infty }{{}}d\omega \acute{\ }\frac{1}{\omega \acute{\ }-\omega }\hat{\chi }\left( \omega \acute{\ } \right)

TeX (checked):

{\begin{matrix}\lim \\\varepsilon ->{{0}^{+}}\\\end{matrix}}\left[\int _{-\infty }^{\omega -\varepsilon }{+\int _{\omega +\varepsilon }^{\infty }{}}\right]d\omega {\acute {\ }}{\frac {1}{\omega {\acute {\ }}-\omega }}{\hat {\chi }}\left(\omega {\acute {\ }}\right)=P\int _{-\infty }^{\infty }{}d\omega {\acute {\ }}{\frac {1}{\omega {\acute {\ }}-\omega }}{\hat {\chi }}\left(\omega {\acute {\ }}\right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.43 KB / 516 B) :

limε>0+[ωε+ω+ε]dω´1ω´ωχ^(ω´)=Pdω´1ω´ωχ^(ω´)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>&#x03B5;</mi><mo>&#x2212;</mo><mo>&gt;</mo><msup><mn>0</mn><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi><mo>&#x2212;</mo><mi>&#x03B5;</mi></mrow></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mo>+</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi><mo>+</mo><mi>&#x03B5;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mi>d</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>&#x03C9;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C7;</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>P</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>&#x03C9;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C7;</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • ε
  • ω
  • ε
  • ω
  • ε
  • d
  • ω
  • ´
  • ω
  • ´
  • ω
  • χ^
  • ω
  • ´
  • P
  • ω
  • ´
  • ω
  • ´
  • ω
  • χ^
  • ω
  • ´

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results