Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1090 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1090)

(force rerendering)

Occurrences on the following pages:

Hash: 0070a913a74f1e0e400bb6ea4c236b62

TeX (original user input):

\begin{align}
& \tilde{n}\left( \omega  \right)=n\left( \omega  \right)+i\gamma \left( \omega  \right) \\
& \tilde{n}{{\left( \omega  \right)}^{2}}=\varepsilon \left( \omega  \right)\equiv \varepsilon \acute{\ }+i\varepsilon \acute{\ }\acute{\ } \\
& \varepsilon \acute{\ }\left( \omega  \right)={{n}^{2}}-{{\gamma }^{2}} \\
& \varepsilon \acute{\ }\acute{\ }\left( \omega  \right)=2n\gamma  \\
& \Rightarrow \left. \begin{matrix}
\gamma   \\
n  \\
\end{matrix} \right\}=\frac{1}{\sqrt{2}}{{\left( \sqrt{\varepsilon {{\acute{\ }}^{2}}+\varepsilon \acute{\ }{{\acute{\ }}^{2}}}\mp \varepsilon \acute{\ } \right)}^{\frac{1}{2}}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\tilde {n}}\left(\omega \right)=n\left(\omega \right)+i\gamma \left(\omega \right)\\&{\tilde {n}}{{\left(\omega \right)}^{2}}=\varepsilon \left(\omega \right)\equiv \varepsilon {\acute {\ }}+i\varepsilon {\acute {\ }}{\acute {\ }}\\&\varepsilon {\acute {\ }}\left(\omega \right)={{n}^{2}}-{{\gamma }^{2}}\\&\varepsilon {\acute {\ }}{\acute {\ }}\left(\omega \right)=2n\gamma \\&\Rightarrow \left.{\begin{matrix}\gamma \\n\\\end{matrix}}\right\}={\frac {1}{\sqrt {2}}}{{\left({\sqrt {\varepsilon {{\acute {\ }}^{2}}+\varepsilon {\acute {\ }}{{\acute {\ }}^{2}}}}\mp \varepsilon {\acute {\ }}\right)}^{\frac {1}{2}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.685 KB / 577 B) :

n~(ω)=n(ω)+iγ(ω)n~(ω)2=ε(ω)ε´+iε´´ε´(ω)=n2γ2ε´´(ω)=2nγγn}=12(ε´2+ε´´2ε´)12
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>n</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>i</mi><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo>~</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>&#x03B5;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2261;</mo><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>+</mo><mi>i</mi><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>2</mn><mi>n</mi><mi>&#x03B3;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B3;</mi></mtd></mtr><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mn>2</mn></msqrt></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></msqrt></mrow><mo>&#x2213;</mo><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • n~
  • ω
  • n
  • ω
  • i
  • γ
  • ω
  • n~
  • ω
  • ε
  • ω
  • ε
  • ´
  • i
  • ε
  • ´
  • ´
  • ε
  • ´
  • ω
  • n
  • γ
  • ε
  • ´
  • ´
  • ω
  • n
  • γ
  • γ
  • n
  • ε
  • ´
  • ε
  • ´
  • ´
  • ε
  • ´

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results