Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1199.1090 on revision:1199
* Page found: Elektrodynamik Schöll (eq math.1199.1090)
(force rerendering)Occurrences on the following pages:
Hash: 0070a913a74f1e0e400bb6ea4c236b62
TeX (original user input):
\begin{align}
& \tilde{n}\left( \omega \right)=n\left( \omega \right)+i\gamma \left( \omega \right) \\
& \tilde{n}{{\left( \omega \right)}^{2}}=\varepsilon \left( \omega \right)\equiv \varepsilon \acute{\ }+i\varepsilon \acute{\ }\acute{\ } \\
& \varepsilon \acute{\ }\left( \omega \right)={{n}^{2}}-{{\gamma }^{2}} \\
& \varepsilon \acute{\ }\acute{\ }\left( \omega \right)=2n\gamma \\
& \Rightarrow \left. \begin{matrix}
\gamma \\
n \\
\end{matrix} \right\}=\frac{1}{\sqrt{2}}{{\left( \sqrt{\varepsilon {{\acute{\ }}^{2}}+\varepsilon \acute{\ }{{\acute{\ }}^{2}}}\mp \varepsilon \acute{\ } \right)}^{\frac{1}{2}}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{\tilde {n}}\left(\omega \right)=n\left(\omega \right)+i\gamma \left(\omega \right)\\&{\tilde {n}}{{\left(\omega \right)}^{2}}=\varepsilon \left(\omega \right)\equiv \varepsilon {\acute {\ }}+i\varepsilon {\acute {\ }}{\acute {\ }}\\&\varepsilon {\acute {\ }}\left(\omega \right)={{n}^{2}}-{{\gamma }^{2}}\\&\varepsilon {\acute {\ }}{\acute {\ }}\left(\omega \right)=2n\gamma \\&\Rightarrow \left.{\begin{matrix}\gamma \\n\\\end{matrix}}\right\}={\frac {1}{\sqrt {2}}}{{\left({\sqrt {\varepsilon {{\acute {\ }}^{2}}+\varepsilon {\acute {\ }}{{\acute {\ }}^{2}}}}\mp \varepsilon {\acute {\ }}\right)}^{\frac {1}{2}}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.685 KB / 577 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>n</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>i</mi><mi>γ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo>~</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>ε</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>≡</mo><mi>ε</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>+</mo><mi>i</mi><mi>ε</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>ε</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>ε</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>2</mn><mi>n</mi><mi>γ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>γ</mi></mtd></mtr><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mn>2</mn></msqrt></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>ε</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>ε</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></msqrt></mrow><mo>∓</mo><mi>ε</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results