Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1064 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1064)

(force rerendering)

Occurrences on the following pages:

Hash: e161b75470fed0ffdd25d46bfde88d07

TeX (original user input):

\begin{align}
& \bar{E}(\bar{r},t)={{{\bar{E}}}_{0}}{{e}^{i\left( \bar{k}\bar{r}-\omega t \right)}} \\
& \bar{E}({{{\bar{x}}}_{3}},t)={{{\bar{E}}}_{0}}{{e}^{-\frac{{{x}_{3}}}{\lambda }}}{{e}^{-i\omega \left( t-\frac{n}{c}{{x}_{3}} \right)}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\bar {E}}({\bar {r}},t)={{\bar {E}}_{0}}{{e}^{i\left({\bar {k}}{\bar {r}}-\omega t\right)}}\\&{\bar {E}}({{\bar {x}}_{3}},t)={{\bar {E}}_{0}}{{e}^{-{\frac {{x}_{3}}{\lambda }}}}{{e}^{-i\omega \left(t-{\frac {n}{c}}{{x}_{3}}\right)}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.734 KB / 466 B) :

E¯(r¯,t)=E¯0ei(k¯r¯ωt)E¯(x¯3,t)=E¯0ex3λeiω(tncx3)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>&#x03C9;</mi><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></mfrac></mrow></mrow></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • E¯
  • r¯
  • t
  • E¯0
  • e
  • i
  • k¯
  • r¯
  • ω
  • t
  • E¯
  • x¯3
  • t
  • E¯0
  • e
  • x3
  • λ
  • e
  • i
  • ω
  • t
  • n
  • c
  • x3

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results