Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1199.1053 on revision:1199
* Page found: Elektrodynamik Schöll (eq math.1199.1053)
(force rerendering)Occurrences on the following pages:
Hash: a19ee01f82565580520500a24ebf2fce
TeX (original user input):
\begin{align}
& \rho =0 \\
& \nabla \times \bar{E}+\dot{\bar{B}}=0 \\
& \nabla \times \bar{B}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}\dot{\bar{E}}={{\mu }_{0}}\mu \bar{j}={{\mu }_{0}}\mu \sigma \bar{E} \\
& \nabla \cdot \bar{E}=0 \\
& \nabla \cdot \bar{B}=0 \\
& \Rightarrow \nabla \times \left( \nabla \times \bar{E} \right)=\nabla \left( \nabla \cdot \bar{E} \right)-\Delta \bar{E}=-\Delta \bar{E}=-\nabla \times \dot{\bar{B}}=-{{\mu }_{0}}\mu \sigma \dot{\bar{E}}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}\ddot{\bar{E}} \\
& \\
& \Delta \bar{E}={{\mu }_{0}}\mu \sigma \dot{\bar{E}}+{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}\ddot{\bar{E}} \\
\end{align}
TeX (checked):
{\begin{aligned}&\rho =0\\&\nabla \times {\bar {E}}+{\dot {\bar {B}}}=0\\&\nabla \times {\bar {B}}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}{\dot {\bar {E}}}={{\mu }_{0}}\mu {\bar {j}}={{\mu }_{0}}\mu \sigma {\bar {E}}\\&\nabla \cdot {\bar {E}}=0\\&\nabla \cdot {\bar {B}}=0\\&\Rightarrow \nabla \times \left(\nabla \times {\bar {E}}\right)=\nabla \left(\nabla \cdot {\bar {E}}\right)-\Delta {\bar {E}}=-\Delta {\bar {E}}=-\nabla \times {\dot {\bar {B}}}=-{{\mu }_{0}}\mu \sigma {\dot {\bar {E}}}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}{\ddot {\bar {E}}}\\&\\&\Delta {\bar {E}}={{\mu }_{0}}\mu \sigma {\dot {\bar {E}}}+{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}{\ddot {\bar {E}}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.349 KB / 535 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>ρ</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>μ</mi><mi>ε</mi><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>μ</mi><mi>σ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">∇</mi><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">∇</mi><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mo>−</mo><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mo>−</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mo>−</mo><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>μ</mi><mi>σ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>−</mo><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>μ</mi><mi>ε</mi><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>μ</mi><mi>σ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>+</mo><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>μ</mi><mi>ε</mi><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results