Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1199.1053 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1053)

(force rerendering)

Occurrences on the following pages:

Hash: a19ee01f82565580520500a24ebf2fce

TeX (original user input):

\begin{align}
& \rho =0 \\
& \nabla \times \bar{E}+\dot{\bar{B}}=0 \\
& \nabla \times \bar{B}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}\dot{\bar{E}}={{\mu }_{0}}\mu \bar{j}={{\mu }_{0}}\mu \sigma \bar{E} \\
& \nabla \cdot \bar{E}=0 \\
& \nabla \cdot \bar{B}=0 \\
& \Rightarrow \nabla \times \left( \nabla \times \bar{E} \right)=\nabla \left( \nabla \cdot \bar{E} \right)-\Delta \bar{E}=-\Delta \bar{E}=-\nabla \times \dot{\bar{B}}=-{{\mu }_{0}}\mu \sigma \dot{\bar{E}}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}\ddot{\bar{E}} \\
&  \\
& \Delta \bar{E}={{\mu }_{0}}\mu \sigma \dot{\bar{E}}+{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}\ddot{\bar{E}} \\
\end{align}

TeX (checked):

{\begin{aligned}&\rho =0\\&\nabla \times {\bar {E}}+{\dot {\bar {B}}}=0\\&\nabla \times {\bar {B}}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}{\dot {\bar {E}}}={{\mu }_{0}}\mu {\bar {j}}={{\mu }_{0}}\mu \sigma {\bar {E}}\\&\nabla \cdot {\bar {E}}=0\\&\nabla \cdot {\bar {B}}=0\\&\Rightarrow \nabla \times \left(\nabla \times {\bar {E}}\right)=\nabla \left(\nabla \cdot {\bar {E}}\right)-\Delta {\bar {E}}=-\Delta {\bar {E}}=-\nabla \times {\dot {\bar {B}}}=-{{\mu }_{0}}\mu \sigma {\dot {\bar {E}}}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}{\ddot {\bar {E}}}\\&\\&\Delta {\bar {E}}={{\mu }_{0}}\mu \sigma {\dot {\bar {E}}}+{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}{\ddot {\bar {E}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.349 KB / 535 B) :

ρ=0×E¯+B¯˙=0×B¯μ0μεε0E¯˙=μ0μj¯=μ0μσE¯E¯=0B¯=0×(×E¯)=(E¯)ΔE¯=ΔE¯=×B¯˙=μ0μσE¯˙μ0μεε0E¯¨ΔE¯=μ0μσE¯˙+μ0μεε0E¯¨
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03C1;</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03B5;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mo>&#x2212;</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03B5;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>+</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03B5;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • ρ
  • E¯
  • B¯˙
  • B¯
  • μ0
  • μ
  • ε
  • ε0
  • E¯˙
  • μ0
  • μ
  • j¯
  • μ0
  • μ
  • σ
  • E¯
  • E¯
  • B¯
  • E¯
  • E¯
  • Δ
  • E¯
  • Δ
  • E¯
  • B¯˙
  • μ0
  • μ
  • σ
  • E¯˙
  • μ0
  • μ
  • ε
  • ε0
  • E¯¨
  • Δ
  • E¯
  • μ0
  • μ
  • σ
  • E¯˙
  • μ0
  • μ
  • ε
  • ε0
  • E¯¨

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results