Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1149.5 on revision:1149

* Page found: Rotierendes Pendel (eq math.1149.5)

(force rerendering)

Occurrences on the following pages:

Hash: 42a7e3419eb40c24567bb9e6f21b6daf

TeX (original user input):

\begin{align}
  & {{{\dot{x}}}^{2}}={{a}^{2}}{{\omega }^{2}}{{\sin }^{2}}\left( \omega t \right)+{{L}^{2}}{{{\dot{\varphi }}}^{2}}{{\cos }^{2}}\left( \varphi  \right)-aL\omega \dot{\varphi }\cos \left( \varphi  \right)\sin \left( \omega t \right)+ \\
 & \quad \quad {{a}^{2}}{{\omega }^{2}}{{\cos }^{2}}\left( \omega t \right)+{{L}^{2}}{{{\dot{\varphi }}}^{2}}{{\sin }^{2}}\left( \varphi  \right)+aL\omega \dot{\varphi }\sin \left( \varphi  \right)\cos \left( \omega t \right) \\
 & \quad ={{a}^{2}}{{\omega }^{2}}+{{L}^{2}}{{{\dot{\varphi }}}^{2}}+aL\omega \dot{\varphi }\left( \sin \left( \varphi  \right)\cos \left( \omega t \right)-\cos \left( \varphi  \right)\sin \left( \omega t \right) \right) \\
 & \quad ={{a}^{2}}{{\omega }^{2}}+{{L}^{2}}{{{\dot{\varphi }}}^{2}}+aL\omega \dot{\varphi }\sin \left( \varphi -\omega t \right)
\end{align}

TeX (checked):

{\begin{aligned}&{{\dot {x}}^{2}}={{a}^{2}}{{\omega }^{2}}{{\sin }^{2}}\left(\omega t\right)+{{L}^{2}}{{\dot {\varphi }}^{2}}{{\cos }^{2}}\left(\varphi \right)-aL\omega {\dot {\varphi }}\cos \left(\varphi \right)\sin \left(\omega t\right)+\\&\quad \quad {{a}^{2}}{{\omega }^{2}}{{\cos }^{2}}\left(\omega t\right)+{{L}^{2}}{{\dot {\varphi }}^{2}}{{\sin }^{2}}\left(\varphi \right)+aL\omega {\dot {\varphi }}\sin \left(\varphi \right)\cos \left(\omega t\right)\\&\quad ={{a}^{2}}{{\omega }^{2}}+{{L}^{2}}{{\dot {\varphi }}^{2}}+aL\omega {\dot {\varphi }}\left(\sin \left(\varphi \right)\cos \left(\omega t\right)-\cos \left(\varphi \right)\sin \left(\omega t\right)\right)\\&\quad ={{a}^{2}}{{\omega }^{2}}+{{L}^{2}}{{\dot {\varphi }}^{2}}+aL\omega {\dot {\varphi }}\sin \left(\varphi -\omega t\right)\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.439 KB / 508 B) :

x˙2=a2ω2sin2(ωt)+L2φ˙2cos2(φ)aLωφ˙cos(φ)sin(ωt)+a2ω2cos2(ωt)+L2φ˙2sin2(φ)+aLωφ˙sin(φ)cos(ωt)=a2ω2+L2φ˙2+aLωφ˙(sin(φ)cos(ωt)cos(φ)sin(ωt))=a2ω2+L2φ˙2+aLωφ˙sin(φωt)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msup><mi>L</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C6;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>a</mi><mi>L</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C6;</mi><mo>˙</mo></mover></mrow></mrow><mi>cos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo></mtd></mtr><mtr><mtd></mtd><mtd><mspace width="1em"></mspace><mspace width="1em"></mspace><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msup><mi>L</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C6;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>a</mi><mi>L</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C6;</mi><mo>˙</mo></mover></mrow></mrow><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>cos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mspace width="1em"></mspace><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><mi>L</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C6;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>a</mi><mi>L</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C6;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>cos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>cos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mspace width="1em"></mspace><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><mi>L</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C6;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>a</mi><mi>L</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C6;</mi><mo>˙</mo></mover></mrow></mrow><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C6;</mi><mo>&#x2212;</mo><mi>&#x03C9;</mi><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Rotierendes Pendel page

Identifiers

  • x˙
  • a
  • ω
  • ω
  • t
  • L
  • φ˙
  • φ
  • a
  • L
  • ω
  • φ˙
  • φ
  • ω
  • t
  • a
  • ω
  • ω
  • t
  • L
  • φ˙
  • φ
  • a
  • L
  • ω
  • φ˙
  • φ
  • ω
  • t
  • a
  • ω
  • L
  • φ˙
  • a
  • L
  • ω
  • φ˙
  • φ
  • ω
  • t
  • φ
  • ω
  • t
  • a
  • ω
  • L
  • φ˙
  • a
  • L
  • ω
  • φ˙
  • φ
  • ω
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results