Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1068.5 on revision:1068
* Page found: Affinier Raum (eq math.1068.5)
(force rerendering)Occurrences on the following pages:
Hash: c6e76e17f2b6cdd5a3967a0a97240c56
TeX (original user input):
\begin{matrix}
K:=\left( {{K}_{M}},+,\centerdot \right) \\
X:=\text{ K}_{\text{M}}^{\text{n}} \\
T:=\left( K_{M}^{n},+,\centerdot \right) \\
\tau :K_{M}^{n}\times K_{M}^{n}\to K_{M}^{n} \\
\left( t,x \right)\to t+x\text{ hier sei }+=+ \\
\left( \left( \begin{align}
& {{t}_{1}} \\
& \vdots \\
& {{t}_{n}} \\
\end{align} \right),\left( \begin{align}
& {{x}_{1}} \\
& \vdots \\
& {{x}_{n}} \\
\end{align} \right) \right)\to \left( \begin{align}
& {{t}_{1}}+{{x}_{1}} \\
& \quad \vdots \\
& {{t}_{n}}+{{x}_{n}} \\
\end{align} \right) \\
\end{matrix}
TeX (checked):
{\begin{matrix}K:=\left({{K}_{M}},+,\centerdot \right)\\X:={\text{ K}}_{\text{M}}^{\text{n}}\\T:=\left(K_{M}^{n},+,\centerdot \right)\\\tau :K_{M}^{n}\times K_{M}^{n}\to K_{M}^{n}\\\left(t,x\right)\to t+x{\text{ hier sei }}+=+\\\left(\left({\begin{aligned}&{{t}_{1}}\\&\vdots \\&{{t}_{n}}\\\end{aligned}}\right),\left({\begin{aligned}&{{x}_{1}}\\&\vdots \\&{{x}_{n}}\\\end{aligned}}\right)\right)\to \left({\begin{aligned}&{{t}_{1}}+{{x}_{1}}\\&\quad \vdots \\&{{t}_{n}}+{{x}_{n}}\\\end{aligned}}\right)\\\end{matrix}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.156 KB / 587 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>K</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow></msub><mo>,</mo><mo>+</mo><mo>,</mo><mo variantform="True">⋅</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd><mi>X</mi><mi>:</mi><mo>=</mo><msubsup><mrow data-mjx-texclass="ORD"><mtext> K</mtext></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>M</mtext></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>n</mtext></mrow></mrow></msubsup></mtd></mtr><mtr><mtd><mi>T</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msubsup><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msubsup><mo>,</mo><mo>+</mo><mo>,</mo><mo variantform="True">⋅</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd><mi>τ</mi><mi>:</mi><msubsup><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msubsup><mo>×</mo><msubsup><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msubsup><mo accent="false">→</mo><msubsup><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msubsup></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo accent="false">→</mo><mi>t</mi><mo>+</mo><mi>x</mi><mrow data-mjx-texclass="ORD"><mtext> hier sei </mtext></mrow><mo>+</mo><mo>=</mo><mo>+</mo></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>⋮</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>,</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>⋮</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo accent="false">→</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mspace width="1em"></mspace><mo>⋮</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Affinier Raum page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results