Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1068.5 on revision:1068

* Page found: Affinier Raum (eq math.1068.5)

(force rerendering)

Occurrences on the following pages:

Hash: c6e76e17f2b6cdd5a3967a0a97240c56

TeX (original user input):

\begin{matrix}
  K:=\left( {{K}_{M}},+,\centerdot  \right) \\ 
  X:=\text{ K}_{\text{M}}^{\text{n}} \\ 
  T:=\left( K_{M}^{n},+,\centerdot  \right) \\ 
  \tau :K_{M}^{n}\times K_{M}^{n}\to K_{M}^{n} \\ 
  \left( t,x \right)\to t+x\text{ hier sei }+=+ \\ 
  \left( \left( \begin{align}
  & {{t}_{1}} \\ 
 & \vdots  \\ 
 & {{t}_{n}} \\ 
\end{align} \right),\left( \begin{align}
  & {{x}_{1}} \\ 
 & \vdots  \\ 
 & {{x}_{n}} \\ 
\end{align} \right) \right)\to \left( \begin{align}
  & {{t}_{1}}+{{x}_{1}} \\ 
 & \quad \vdots  \\ 
 & {{t}_{n}}+{{x}_{n}} \\ 
\end{align} \right) \\ 
\end{matrix}

TeX (checked):

{\begin{matrix}K:=\left({{K}_{M}},+,\centerdot \right)\\X:={\text{ K}}_{\text{M}}^{\text{n}}\\T:=\left(K_{M}^{n},+,\centerdot \right)\\\tau :K_{M}^{n}\times K_{M}^{n}\to K_{M}^{n}\\\left(t,x\right)\to t+x{\text{ hier sei }}+=+\\\left(\left({\begin{aligned}&{{t}_{1}}\\&\vdots \\&{{t}_{n}}\\\end{aligned}}\right),\left({\begin{aligned}&{{x}_{1}}\\&\vdots \\&{{x}_{n}}\\\end{aligned}}\right)\right)\to \left({\begin{aligned}&{{t}_{1}}+{{x}_{1}}\\&\quad \vdots \\&{{t}_{n}}+{{x}_{n}}\\\end{aligned}}\right)\\\end{matrix}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.156 KB / 587 B) :

K:=(KM,+,)X:= KMnT:=(KMn,+,)τ:KMn×KMnKMn(t,x)t+x hier sei +=+((t1tn),(x1xn))(t1+x1tn+xn)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>K</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow></msub><mo>,</mo><mo>+</mo><mo>,</mo><mo variantform="True">&#x22C5;</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd><mi>X</mi><mi>:</mi><mo>=</mo><msubsup><mrow data-mjx-texclass="ORD"><mtext>&#xA0;K</mtext></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>M</mtext></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>n</mtext></mrow></mrow></msubsup></mtd></mtr><mtr><mtd><mi>T</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msubsup><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msubsup><mo>,</mo><mo>+</mo><mo>,</mo><mo variantform="True">&#x22C5;</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd><mi>&#x03C4;</mi><mi>:</mi><msubsup><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msubsup><mo>&#x00D7;</mo><msubsup><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msubsup><mo accent="false">&#x2192;</mo><msubsup><mi>K</mi><mrow data-mjx-texclass="ORD"><mi>M</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msubsup></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo accent="false">&#x2192;</mo><mi>t</mi><mo>+</mo><mi>x</mi><mrow data-mjx-texclass="ORD"><mtext>&#xA0;hier sei&#xA0;</mtext></mrow><mo>+</mo><mo>=</mo><mo>+</mo></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x22EE;</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>,</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x22EE;</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo accent="false">&#x2192;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mspace width="1em"></mspace><mo>&#x22EE;</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Affinier Raum page

Identifiers

  • K
  • KM
  • X
  • T
  • K
  • M
  • n
  • τ
  • K
  • M
  • n
  • K
  • M
  • n
  • K
  • M
  • n
  • t
  • x
  • t
  • x
  • t1
  • tn
  • x1
  • xn
  • t1
  • x1
  • tn
  • xn

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results